Artificial intelligence (AI) systems have a long way to go before they can take over tasks and jobs traditionally performed by people, say scientists who highlighted the severe limitations of deep learning computer networks.
Researchers at University of California, Los Angeles (UCLA) in the US conducted various experiments which showed that it is easy to fool the deep learning neural networks.
"The machines have severe limitations that we need to understand," said Philip Kellman, a UCLA professor and senior author of the study published in the journal PLOS Computational Biology
According to Kellman, machine vision has drawbacks.
In the first experiment, researchers showed colour images of animals and objects to one of the best deep learning networks, called VGG-19.
However, the images had been altered. For example, the surface of a golf ball was displayed on a teapot; zebra stripes were placed on a camel; and the pattern of a blue and red argyle sock was shown on an elephant.
VGG-19 ranked its top choices and chose the correct item as its first choice for only five of 40 objects.
"We can fool these artificial systems pretty easily. Their learning mechanisms are much less sophisticated than the human mind," said Hongjing Lu, a UCLA professor.
In the second experiment, the psychologists showed images of glass figurines to VGG-19 and to a second deep learning network, called AlexNet. VGG-19 performed better on all the experiments in which both networks were tested.
Both networks were trained to recognise objects using an image database called ImageNet.
However, both networks did poorly, unable to identify the glass figurines. Neither VGG-19 nor AlexNet correctly identified the figurines as their first choices.
Most of the top responses were puzzling to the researchers, such as VGG-19's choice of "website" for "goose" and "can opener" for "polar bear." On average, AlexNet ranked the correct answer 328th out of 1,000 choices.
"The machines make very different errors from humans," Lu said.
In the third experiment, the researchers showed 40 drawings outlined in black, with images in white, to both VGG-19 and AlexNet. These first three experiments were meant to discover whether the devices identified objects by their shape.
The networks again did a poor job of identifying such items as a butterfly, an airplane and a banana.
Researchers concluded that while humans see the entire object, the artificial intelligence networks identify fragments of the object.
"This study shows these systems get the right answer in the images they were trained on without considering shape," Kellman said.
"For humans, overall shape is primary for object recognition, and identifying images by overall shape doesn't seem to be in these deep learning systems at all," he said.
There are dozens of deep learning machines, and the researchers think their findings apply broadly to these devices.
(Only the headline and picture of this report may have been reworked by the Business Standard staff; the rest of the content is auto-generated from a syndicated feed.)
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
)