Drug being developed to cut down growth of cancer cells in early stages

Image
ANI Washington
Last Updated : Mar 24 2014 | 12:30 PM IST

A new research has found that it is possible to cut down the growth of cancer cells at their earliest stages with a new drug.

Research conducted by leading cancer metabolism researchers at Stony Brook University, Paul M. Bingham and Zuzana Zachar, is showing promise in this approach with their clinical investigation of a new class of compounds that disrupt cancer cell mitochondrial metabolism.

The lead compound of a new chemical class with a novel mechanism, called CPI-613, attacks two key cancer cell building block targets in one shot to stop tumor growth.

Discoveries by Drs. Bingham, Zachar and colleagues at Stony Brook University led to a technology for the design of drugs that disrupt cancer metabolism.

In collaboration with Cornerstone Pharmaceuticals, they are evaluating the basic mechanisms of actions behind this class of agents.

In 2008, initial stage (phase I) Food and Drug Administration (FDA)-approved clinical trials of anti-cancer compounds began. As the exclusive licensee, Cornerstone is sponsoring the clinical trials, which have now moved into phase II.

The latest research findings in the paper highlights the results of cultured cell studies by the research team in support of the phase II clinical trials.

Bingham said that his team discovered that CPI-613 acts as a 'cocktail of one,' meaning the single agent kills cancer cells selectively by simultaneously attacking two crucial metabolic enzymes in cancer cells, and each by a different mechanism.

The critical clinical implication of this duel mechanism of action is that unlike other current anti-cancer agents, CPI-613 has the capacity to attack tumor metabolism more robustly than single-target agents and be less vulnerable to evolved drug resistance, Bingham said.

Dr. Bingham added that CPI-613's two-pronged attack on this cancer cell cycle efficiently and selectively induces cancer cell death in a variety of cancers, including solid tumors and also in leukemia and lymphoma.

The agent attacks and deactivates two lipoate-using enzymes that are major entry points for energy and carbon into the mitochondrial citric acid cycle of the cancer cell.

The study is published in Cancer and Metabolism.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Mar 24 2014 | 12:13 PM IST

Next Story