A recent research has found that faulty inhibitory neuro-transmission and abnormally increased activity in the hippocampus of the brain impairs our memory and attention.
Neurons in the brain interact by sending each other chemical messages, called 'neurotransmitters'. Gamma-Aminobutyric Acid (GABA) is the most common inhibitory neurotransmitter, which is important to restrain neural activity, preventing neurons from getting too trigger-happy and from firing too much or responding to irrelevant stimuli.
The research has implications for understanding cognitive deficits in a variety of brain disorders, including schizophrenia, age-related cognitive decline and Alzheimer's, and for the treatment of cognitive deficits.
Hippocampus, the part of the brain that sits within our temporal lobes plays a major role in our everyday memory of events and of where and when they happen, for example remembering where we parked our car before going shopping.
This research has shown that a lack of restraint in the neural firing within the hippocampus disrupts memory.
In addition, such aberrant neuron firing within the hippocampus also disrupted attention, a cognitive function that does not normally require the hippocampus.
Increased activity can be more detrimental than reduced activity
Bast, the researcher, said, "Our research carried out in rats highlights the importance of GAB Aergic inhibition within the hippocampus for memory performance and for attention. The finding that faulty inhibition disrupts memory suggests that memory depends on well-balanced neural activity within the hippocampus, with both too much and too little causing impairments. This is an important finding because traditionally, memory impairments have mainly been associated with reduced activity or lesions of the hippocampus."
"Our second important finding is that faulty inhibition leading to increased neural activity within the hippocampus disrupts attention, a cognitive function that does not normally require the hippocampus, but depends on the prefrontal cortex. This probably reflects that there are very strong neuronal connections between hippocampus and prefrontal cortex. Our finding suggests that aberrant hippocampal activity has a knock-on effect on the prefrontal cortex, thereby disrupting attention," he added
"Overall, our new findings show that increased activity of a brain region, due to faulty inhibitory neurotransmission, can be more detrimental to cognitive function than reduced activity or a lesion. Increased activity within a brain region can disrupt not only the function of the region itself but also the function of other regions to which it is connected, in this case prefrontal cortex-dependent attention, " said Bast.
Bast's research is motivated by recent clinical findings that patients in early stages of schizophrenia, age-related cognitive decline and Alzheimer's show faulty inhibition and increased activity within the hippocampus.
The new study, where inhibition in the hippocampus of rats was disrupted before the animals took part in tests of attention and memory, revealed that such faulty inhibition and aberrant activity within the hippocampus causes the type of memory and attentional impairments seen in patients.
This research adds to the team's recent findings, where they found that attention was disrupted by faulty inhibition and increased activity within the prefrontal cortex, a brain region important for attention.
This research has important implications for treating cognitive impairments too.
The findings show that simply 'boosting' the activity of the key memory and attention centres in the brain, which has been a long-standing strategy for cognitive enhancement, will not necessarily improve memory and attention, but can actually impair these functions. What's important is to re-balance activity within these regions.
Bast, said, "One emerging idea is that early stages of cognitive disorders, such as schizophrenia and age-related cognitive decline and Alzheimer's, are characterised by faulty inhibition and too much activity, this excess neural activity leads then to neuronal damage and the reduced brain activity characterizing later stages of these disorders. So, rebalancing aberrant activity early on may not only restore attention and memory, but also prevent further decline."
Named 'Hippocampal neural disinhibition causes attentional and memory deficits', the study is published in the academic journal Cerebral Cortex.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
