Genetic mutation breakthrough may help make Parkinson's disease history

Image
ANI Washington
Last Updated : Aug 12 2013 | 10:55 AM IST

Scientists have found how genetic mutations associated to Parkinson's disease may play a key role in brain cells' death, potentially paving the way for the development of more effective drug treatments.

A team of researchers from UCL, the University of Cambridge and the University of Sheffield showed how defects in the Parkinson's gene Fbxo7 cause problems with 'mitaphagy' - an essential process through which our bodies are able to get rid of damaged cells.

Mitochondria are the 'energy powerhouses' of cells. Their function is vital in nerve cells which require a great deal of energy in order to function and survive. Dysfunctional mitochondria are potentially very harmful and, normally, cells dispose of the damaged mitchondria by self-eating them, a process called mitophagy.

Most of what we know about the mitophagy process comes from the study of the familial forms of Parkinson's, one of the most common diseases of the brain. Over the last three years, two genes associated with familial Parkinson's disease, PINK1 and Parkin, have been reported to play a role in mitophagy.

The scientists showed just how central the role of mitophagy is and how mutations in Fbxo7 are also linked with the disease and interfere with the PINK1-Parkin pathway.

In people with Parkinson's, genetic mutations cause defects in mitophagy, leading to a build-up of dysfunctional mitochondria. This is likely to explain, at least partially, the death of brain cells in Parkinson's patients with these mutations.

One of the lead authors, Dr Helene Plun-Favreau from the UCL Institute of Neurology, said what makes the study so robust is the confirmation of defective mitophagy in a number of different Parkinson's models, including cells of patients who carry a mutation in the Fbxo7 gene.

Co-author Dr Heike Laman, University of Cambridge, said the study focuses the attention of the PD community on the importance of the proper maintenance of mitochondria for the health of neurons.

Professor Nicholas Wood, Neuroscience programme director for the NIHR University College London Hospitals BRC, said that it is very exciting to see how detailed biological work of this type can highlight a single pathway that contributes to Parkinson's disease.

He added that this presented the opportunity of more rationale drug design for many forms of parkinsonism.

The new study has been published in Nature Neuroscience.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 12 2013 | 10:47 AM IST

Next Story