How black holes are formed

Image
ANI Washington
Last Updated : May 08 2014 | 9:25 AM IST

A partnership of the UPV/EHU-University of the Basque Country, Ikerbasque and the CSIC-Spanish National Research Council is participating in the detecting, for the first time, of circular light coming from a recently created black hole.

On 24 October 2012 observatories across the world were alerted about a huge stellar explosion, the GRB121024A, which had been located just hours before in the Eridanus constellation by NASA's Swift satellite. However, only the European Southern Observatory using its Very Large Telescope (VLT) located in the Atacama desert in Chile managed to take accurate polarimetric measurements of the phenomenon.

The data obtained on that explosion, which took place about 11,000 million years ago, have made it possible to reconstruct how a black hole is formed.

For the last decade astrophysicists have been in possession of strong evidence that LGRBs occur when the so-called massive stars burst; these are huge stars with masses of up to hundreds of times bigger than that of the Sun and which, moreover, spin rapidly on a rotation axis.

The energy given off by this gigantic explosion would be emitted in two jets displaying a high level of energy and which would be aligned with the rotation axis of the dying star.

What is more, all these stars have magnetic fields. And these are intensified further if they rotate rapidly, as in the case of the LGRBs. So during the internal collapse of the star towards the central black hole, the magnetic fields of the star would also swirl around the star's rotation axis. And during the collapse of the star, a powerful "magnetic geyser" would be produced and be ejected from the environment of the black hole that is being formed; the effects of this can be felt at distances of billions of kilometres.

This complex scenario led one to predict that the light emitted during the explosion of the star must have been circularly polarized as if it were a screw. And that is what, for the first time, the authors have detected in Chile: a circularly polarized light that is the direct consequence of a black hole "recently" created on the outer reaches of the Universe and which has been confirmed by the theoretical model.

The study has been published in the journal Nature.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 08 2014 | 9:10 AM IST

Next Story