Enceladus, a large icy, oceanic moon of Saturn, may have flipped in an out-of-this-world wallop.
While combing through data collected by NASA's Cassini mission during flybys of Enceladus, astronomers from Cornell University, the University of Texas and NASA found the first evidence that the moon's axis has reoriented.
Examining the moon's geological features, the group showed how Enceladus appears to have tipped away from its original axis by about 55 degrees.
"We found a chain of low areas, or basins, that trace a belt across the moon's surface that we believe are the fossil remnants of an earlier, previous equator and poles," said lead author Radwan Tajeddine. "Their pattern reflects spatial variations in the icy shell, consistent with a variety of geological features visible in Cassini images."
At the moon's current southern end, active jets discharge water vapour (as well as organic compounds, gases, salts and silica) through vents from an ocean deep beneath the moon's icy-crust surface. It's a place technically known as the south polar terrain, and astronomers have nicknamed the long, geologically active fractures "Tiger Stripes" - each about 80 miles long and a little over a mile wide.
Tajeddine believes an asteroid may have struck the moon's current South Polar Region when it was closer to the equator in the past. "The geological activity in this terrain is unlikely to have been initiated by internal processes," he said. "We think that, in order to drive such a large reorientation of the moon, it's possible that an impact was behind the formation of this anomalous terrain."
Wobbly, rickety and unsteady after an asteroid's smack, the physics of Enceladus' rotation would have eventually re-established stability, a process that likely took over a million years. To do that, the north-south axis needed to change - a mechanism called "true polar wander."
Enceladus' topographic and geological features can be explained through geophysical processes, but the moon's north and south poles are quite different. The south is active and geologically young, while the north is covered in craters and appears much older.
The new research is published in Icarus.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
