NASA's Mars curiosity rover finds 'tenfold spike' in methane, organic chemicals on 'Red planet'

Image
ANI Washington
Last Updated : Dec 17 2014 | 10:20 AM IST

NASA's Mars curiosity rover has found tenfold spike in methane in the Martian atmosphere and other organic chemicals in the red planet's soil, it has been reported.

It has measured methane, an organic chemical, in the atmosphere around it and detected other organic molecules in a rock-powder sample collected by the robotic laboratory's drill.

Sushil Atreya of the University of Michigan, Ann Arbor, a member of the Curiosity rover science team, said that this temporary increase in methane, sharply up and then back down, suggested that there must be some relatively localized source and there are many possible sources, biological or non-biological, such as interaction of water and rock.

Curiosity also detected different Martian organic chemicals in powder drilled from a rock dubbed Cumberland, the first definitive detection of organics in surface materials of Mars. These Martian organics could either have formed on Mars or been delivered to Mars by meteorites.

Organic molecules, which contain carbon and usually hydrogen, are chemical building blocks of life, although they could exist without the presence of life. Curiosity's findings from analyzing samples of atmosphere and rock powder do not reveal whether Mars has ever harbored living microbes, but the findings do shed light on a chemically active modern Mars and on favorable conditions for life on ancient Mars.

Researchers also reported that Curiosity's taste of Martian water, bound into lakebed minerals in the Cumberland rock more than three billion years ago, indicates the planet lost much of its water before that lakebed formed and continued to lose large amounts after.

Martian meteorites found on Earth also provide some information, but this record has gaps. No known Martian meteorites are even close to the same age as the rock studied on Mars, which formed about 3.9 billion to 4.6 billion years ago, according to Curiosity's measurements.

The ratio that Curiosity found in the Cumberland sample is about one-half the ratio in water vapor in today's Martian atmosphere, suggesting much of the planet's water loss occurred since that rock formed.

However, the measured ratio was about three times higher than the ratio in the original water supply of Mars, based on the assumption that supply had a ratio similar to that measured in Earth's oceans. This suggests much of Mars' original water was lost before the rock formed.

The study is published in the journal Science.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Dec 17 2014 | 10:08 AM IST

Next Story