New 'inside-out' theory, the alternative view of how complex life came to be

Image
ANI Washington
Last Updated : Dec 13 2014 | 3:15 PM IST

A new "inside-out" theory has suggested an alternate path which led to the evolution of complex life on Earth.

All complex life, including plants, animals and fungi, is made up of eukaryotic cells, cells with a nucleus and other complex internal machinery used to perform the functions an organism needs to stay alive and healthy and humans, for example, are composed of 220 different kinds of eukaryotic cells, which, working in groups, control everything from thinking and locomotion to reproduction and immune defense.

Thus, the origin of the eukaryotic cell is considered one of the most critical evolutionary events in the history of life on Earth and had it not occurred sometime between 1.6 and 2 billion years ago, our planet would be a far different place, populated entirely by prokaryotes, single-celled organisms such as bacteria and archaea.

For the most part, scientists agree that eukaryotic cells arose from a symbiotic relationship between bacteria that bacteria represent two of life's three great domains and archaea, which are similar to bacteria but have many molecular differences. The third is represented by eukaryotes, organisms composed of the more complex eukaryotic cells.

Prevailing theory holds that eukaryotes came to be when a bacterium was swallowed by an archaeon and the engulfed bacterium gave rise to mitochondria, whereas internalized pieces of the outer cell membrane of the archaeon formed the cell's other internal compartments, including the nucleus and endomembrane system.

David Baum from University of Wisconsin-Madison said that the current theory is widely accepted, but he would not say it is "established" since nobody seems to have seriously considered alternative explanations, known as the "inside-out" theory of eukaryotic cell evolution.

The inside-out theory proposed by the Baums suggests that eukaryotes evolved gradually as cell protrusions, called blebs, reached out to trap free-living mitochondria-like bacteria. Drawing energy from the trapped bacteria and using bacterial lipids, insoluble organic fatty acids, as building material, the blebs grew larger, eventually engulfing the bacteria and creating the membrane structures that form the cell's internal compartment boundaries.

The study is published in journal BMC Biology.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Dec 13 2014 | 2:22 PM IST

Next Story