Optic nerve stimulation to offer visual aid to blind: study

Image
ANI
Last Updated : Aug 21 2019 | 3:00 PM IST

Scientists are developing a technology that would circumvent the eyeball in order to deliver the message directly to the brain in case of visually impaired people.

Researchers from EPFL in Switzerland and Scuola Superiore Sant'Anna in Italy will be doing this by stimulating the optic nerve with intraneural electrode known as OpticSELINE.

The study was published in the journal 'Nature Biomedical Engineering'.

"We believe that intraneural stimulation can be a valuable solution for several neuroprosthetic devices for sensory and motor function restoration. The translational potentials of this approach are indeed extremely promising," explains Silvestro Micera, a professor of Bioelectronics at Scuola Superiore Sant'Anna.

Blindness affects an estimated 39 million people in the world. Many factors can induce blindness, like genetics, retinal detachment, trauma, stroke in the visual cortex, glaucoma, cataract, inflammation or infection. Some blindness is temporary and can be treated medically. But how do you help someone who is permanently blind?

The idea is to produce phosphenes, the sensation of seeing light in the form of white patterns, without seeing light directly. Retinal implants, a prosthetic device for helping the blind, suffer from exclusion criteria. For example, half a million people worldwide are blind due to Retinitis pigmentosa, a genetic disorder, but only a few hundred patients qualify for retinal implants for clinical reasons.

A brain implant that stimulates the visual cortex directly is another strategy even though risky. The new intraneural solution minimizes exclusion criteria since the optic nerve and the pathway to the brain are often intact.

The teams engineered the OpticSELINE, an electrode array of 12 electrodes. In order to understand how effective these electrodes are at stimulating the various nerve fibres within the optic nerve, the scientists delivered electric current to the optic nerve via OpticSELINE and measured the brain's activity in the visual cortex. They showed that each stimulating electrode induces a specific and unique pattern of cortical activation, suggesting that intraneural stimulation of the optic nerve is selective and informative.

With current electrode technology, a human OpticSELINE could consist of up to 48-60 electrodes. This limited number of electrodes is not sufficient to restore sight entirely. But these limited visual signals could be engineered to provide a visual aid for daily living.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 21 2019 | 2:45 PM IST

Next Story