Predicting lung disease in infants

Image
ANI Washington D.C
Last Updated : Aug 06 2016 | 3:07 PM IST

Once thought to be sterile until after birth, the airway of an infant is actually colonized with bacteria or bacterial DNA when he is born, suggests a recent study.

The University of Alabama researchers and colleagues have found that this is true for infants born as early as 24 weeks gestation.

How microbes get into the airways and the purpose of this pre-birth colonization are still unclear, but the pattern of colonization appears to have an important link to later severe neonatal lung disease.

An early microbial imbalance, or dysbiosis, is predictive for the development of bronchopulmonary dysplasia, or BPD, a chronic lung disease of prematurity. The extremely low birth-weight, or ELBW, infants in this study had an average birth weight of 1 pound, 8 ounces.

Researchers found that the ELBW infants who went on to develop life-threatening BPD showed abnormal microbial colonization patterns at birth, as compared to pre-term infants who did not get BPD.

"Right at birth, your respiratory microbiome can possibly predict your risk for BPD," said lead investigator Charitharth Vivek Lal.

The study also suggests that the 'healthy' pattern of colonization seen in the BPD-resistant ELBW infants, with increased abundance of Lactobacillus, is protective.

"We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease," the researchers said. "Should a disordered airway microbiome prove to be involved in the pathogenesis of disease, it will be of immediate interest to attempt to develop novel therapeutic interventions."

As for the source of the microbes, Lal and colleagues wrote, "As it is commonly believed that colonization of neonates originates in the birth canal, we were surprised to find that the airway microbiome of vaginally delivered and caesarean section-delivered neonates were similar, which suggests that the microbial DNA in the airways is probably transplacentally derived, consistent with reports that the placenta has a rich microbiome."

The researchers speculate that this transmission of bacteria or bacterial DNA to the in-utero infant could be via blood or amniotic fluid.

The study appears in the journal Scientific Reports.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 06 2016 | 2:59 PM IST

Next Story