Scientists beat cancer protein by 'turning it against itself'

Image
ANI Washington
Last Updated : Nov 09 2014 | 1:35 PM IST

In a new study, scientists have a new way to beat one of the most hard to pin down target proteins in cancer cells, by turning the protein's own molecular machinations against it.

Researchers at Dana-Farber/Boston Children's Cancer and Blood Disorders Center used a specially crafted compound to disrupt the protein's ability to rev up its own production and that of other proteins involved in tumor cell growth. The result, in laboratory samples of neuroblastoma cancer cells and in mice with an aggressive form of neuroblastoma, was death of the cancer cells and retreat of the animals' tumors, with little or no harm to normal cells. Neuroblastoma is a pediatric cancer that begins in embryonic nerve cells and generally occurs in infants and young children.

The study focused on a cell protein called MYCN, one of a family of proteins that are notorious not only for stimulating the growth and proliferation of cancer cells, but also for their ability to evade targeted drug therapies. Researchers now hope that the approach may prove effective against some of the many other cancers also characterized by a surplus of MYC-family proteins in tumor cells.

MYCN and its kin are "transcription factors," proteins that bind to DNA and influence the rate at which genetic information is used by the cell - essentially serving as brightener/dimmer switches for gene activity. Lead author Edmond Chipumuro said that as per recent studies, when transcription factors like MYC were mutated or overabundant, they could have a cancerous effect. They cause a global rise in gene expression, making genes throughout the cell more active.

Although very rare in children older than 10, neuroblastoma has been by far the most common cancer in infants. It accounts for about 7 percent of all cancers in children, and 15 percent of all pediatric cancer deaths.

Chemical biologists led by Dana-Farber's Nathanael Gray, PhD, designed and custom-made a compound called THZ1 that forms a particularly strong bond with CDK7, which is one of the many proteins used in the assembly of a super-enhancer, rendering the protein essentially nonfunctional. When researchers treated laboratory samples of MYCN-amplified neuroblastoma cells with THZ1, the tumor cells died, but normal cells were unaffected. When they used the agent to treat mice with this type of neuroblastoma, the tumors shrank markedly, with no negative side effects for the animals.

Study's senior author, Rani George explained because normal cells didn't acquire super-enhancers on these master regulators, the agent had a profound impact on neuroblastoma tissue but not on normal tissue.

The study is published online in the journal Cell.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 09 2014 | 1:29 PM IST

Next Story