Scientists discover key to heal 'broken hearts'

Image
ANI Washington
Last Updated : Nov 07 2014 | 1:45 PM IST

Researchers have healed injured hearts of living mice by reactivating long dormant molecular machinery found in the animals' cells.

The study by Salk Institute that could help pave the way to new therapies for heart disorders in humans suggests although adult mammals don't normally regenerate damaged tissue, they may retain a latent ability as a holdover from development like their distant ancestors on the evolutionary tree.

When the Salk researchers blocked four molecules thought to suppress these programs for regenerating organs, they saw a drastic improvement in heart regeneration and healing in the mice.

Study's senior author Juan Carlos Izpisua Belmonte, a professor in the Gene Expression Laboratory at Salk said that organ regeneration is a fascinating phenomenon that seemingly recapitulates the processes observed during development. However, despite their current understanding of how embryogenesis and development proceeds, the mechanisms preventing regeneration in adult mammals have remained elusive.

Their studies uncovered four molecules in particular-MiR-99, MiR-100, Let-7a and Let-7c-that fit their criteria. All were heavily repressed during heart injury in zebrafish and they were also present in rats, mice and humans.

However, in studies of mammalian cells in a culture dish and studies of living mice with heart damage, the group saw that the levels of these molecules were high in adults and did not decline with injury. So the team used adeno-associated viruses specific for the heart to target each of those four microRNAs, suppressing their levels experimentally.

Injecting the inhibitors into the hearts of mice that had suffered a heart attack triggered the regeneration of cardiac cells, improving numerous physical and functional aspects of the heart, such as the thickness of its walls and its ability to pump blood.

The scarring caused by the heart attack was much reduced with treatment compared to controls, the researchers found and the improvements were still obvious three and six months after treatment-a long time in a mouse's life.

The study was published in the journal Cell Stem Cell.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 07 2014 | 1:33 PM IST

Next Story