Scientists reprogram blood cells into blood-forming stem cells

Image
ANI Washington
Last Updated : Apr 25 2014 | 11:15 AM IST

Researchers have reprogrammed mature blood cells from mice into blood-forming hematopoietic stem cells (HSCs), using a cocktail of eight genetic switches called transcription factors.

The reprogrammed cells, which the researchers have dubbed induced HSCs (iHSCs), have the functional hallmarks of HSCs, are able to self-renew like HSCs, and can give rise to all of the cellular components of the blood like HSCs.

The research team, led by Derrick J. Rossi, PhD, of Boston Children's Program in Cellular and Molecular Medicine, including lead author Jonah Riddell, PhD, screened gene expression in 40 different types of blood and blood progenitor cells from mice. From this screen they identified 36 transcription factors-genes that control when other genes are turned on and off-that are expressed exclusively in HSCs, not in cells that arise from them.

In a series of mouse transplantation experiments, Rossi's team found that six-Hlf, Runx1t1, Pbx1, Lmo2, Zfp37 and Prdm5-of the 36 factors, plus two additional factors not originally identified in their screen-Mycn and Meis1-were sufficient to robustly reprogram two kinds of blood progenitor cells (pro/pre B cells and common myeloid progenitor cells) into iHSCs.

Rossi's team reprogrammed their source cells by exposing them to viruses containing the genes for all eight factors and a molecular switch that turned the factor genes on in the presence of doxycycline. They then transplanted the exposed cells into recipient mice and activated the genes by giving the mice doxycycline.

The resulting iHSCs were capable of generating the entire blood cell repertoire in the transplanted mice, showing that they had gained the ability to differentiate into all blood lineages. Stem cells collected from those recipients were themselves capable of reconstituting the blood of secondary transplant recipients, proving that the eight-factor cocktail could instill the capacity for self-renewal-a hallmark property of HSCs.

Taking the work a step further, Rossi's team treated mature mouse myeloid cells with the same eight-factor cocktail. Again, when transplanted into mice, iHSCs were generated that produced all of the blood lineages and could regenerate the blood of secondary transplant recipients.

The study has been published online in the journal Cell.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 25 2014 | 11:01 AM IST

Next Story