Researchers have come with a recent study which takes them one step closer toward understanding how the part of our brain that is central for decision-making and the development of addiction is organised on a molecular level.
In mouse models and with methods used for mapping cell types and brain tissue, the researchers were able to visualise the organisation of different opioid-islands in the striatum. Their spatio molecular map may further our understanding of the brain's reward system. The study was published in the journal Cell Reports.
The striatum is the inner part of the brain that among other things regulates rewards, motivation, impulses and motor function. It is considered central to decision-making and the development of various addictions.
In this study, the researchers created a molecular 3D-map of the nerve cells targeted by opioids, such as morphine and heroin, and showed how they are organised in the striatum. It is an important step toward understanding how the brain's network governing motivation and drug addiction is organized. In the study, the researchers described a spatio molecular code that can be used to divide striatum into different subregions.
"Our map forms the basis for a new understanding of the brain's probably most important network for decision-making," said Konstantinos Meletis, associate professor at the Department of Neuroscience at Karolinska Institutet and the study's main author. "It may contribute to an increased understanding of both normal reward processes and the effects of various addictive substances on this network."
To find this molecular code, the researchers used single-nucleus RNA sequencing, a method to study small differences in individual cells and mapping of the striatal gene expression. The results provide the first demonstration of molecular codes that divide the striatum into three main levels of classification: a spatial, a patch-matrix and a cell-type-specific organization.
"With this new knowledge we may now begin to analyze the function of different types of nerve cells in different molecularly defined areas," said Meletis. "This is the first step in directly defining the networks' role in controlling decision-making and addiction with the help of optogenetics."
This new knowledge may also form the basis for the development of new treatments based on a mechanistic understanding of the brain's network, according to the researchers.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
