Scientists have engineered a new technique for precisely measuring the properties of individual protein molecules floating in a liquid, a finding that could one day lead to advances against neurodegenerative diseases like Alzheimer's and Parkinson's.
The new technique called a "five-dimensional (5-D) fingerprint" can measure an individual molecule's shape, volume, electrical charge, rotation speed and propensity for binding to other molecules.
It can also provide additional descriptors like gender, hair colour and clothing, making it much easier to identify specific proteins.
"Identifying individual proteins could help doctors keep better tabs on the status of a patient's disease and could also help researchers gain a better understanding of exactly how amyloid proteins are involved with neurodegenerative diseases," said Michael Mayer, Professor at University of Fribourg in Switzerland.
Measuring properties of proteins in blood and other body fluids could unlock valuable information, as the molecules are a vital building block in the body.
But, sometimes proteins known as amyloid proteins do not form properly. They clump together to block normal cell function and cause brain cell degeneration and disease.
Current methods to identify these proteins are expensive, time-consuming and difficult to interpret and can only provide a broad picture of the overall level of amyloids in a patient's system.
"Amyloid molecules not only vary widely in size, but they tend to clump together into masses that are even more difficult to study. Because it can analyse each particle one by one, this new method gives us a much better window to how amyloids behave inside the body," Mayer said.
For the research, the team used a nanopore 10-30 nanometers wide -- so small that only one protein molecule can fit through at a time. They then filled the nanopore with a salt solution and passed an electric current through the solution.
As a protein molecule tumbles through the nanopore, its movement causes tiny, measurable fluctuations in the electric current. Carefully measuring this current can help determine the protein's unique 5-D signature and identify it almost instantly, the researchers said.
The findings are published in the journal Nature Nanotechnology.
--IANS
rt/sm/vt
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
