Artificial muscles that can lift 12,600 times their own weight

Image
IANS New York
Last Updated : Apr 18 2018 | 2:05 PM IST

Using carbon fiber, a very strong light-weight material which is readily commercially available, researchers have designed artificial muscles capable of lifting up to 12,600 times their own weight.

"The range of applications of these low cost and light-weight artificial muscles is really wide and involves different fields such as robotics, prosthetics, orthotics, and human assistive devices," said one of the researchers Caterina Lamuta from Beckman Institute for Advanced Science and Technology in Illinois.

The new muscles, detailed in the journal Smart Materials and Structures, are made from carbon fiber-reinforced siloxane rubber and have a coiled geometry.

These muscles are capable of not only lifting up to 12,600 times their own weight, but also supporting up to 60 MPa of mechanical stress, providing tensile strokes higher than 25 per cent and specific work of up to 758 J/kg (joule/kg), the study said.

This amount is 18 times more than the specific work natural muscles are capable of producing, the researchers added.

When electrically actuated, the carbon fiber-based artificial muscles showed excellent performance without requiring a high input voltage.

The authors showed how a 0.4 mm diameter muscle bundle was able to lift half a gallon of water by 1.4 inches with only 0.172 V/cm applied voltage.

The artificial muscles themselves are coils comprised of commercial carbon fibers and polydimethylsiloxane (PDMS).

A carbon fibres tow is initially dipped into uncured PDMS diluted with hexane and then twisted with a simple drill to create a yarn with a homogeneous shape and a constant radius.

After the curing of the PDMS, the straight composite yarn is highly twisted until it is fully coiled.

"Coiled muscles were invented recently using nylon threads," said Sameh Tawfick, Assistant Professor at University of Illinois Urbana Champaign in the US.

"They can exert large actuation strokes, which make them incredibly useful for applications in human assistive devices: if only they could be made much stronger," Tawfick explained.

--IANS

gb/vm

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 18 2018 | 1:58 PM IST

Next Story