'Asteroid impact stored proof of life in glasses on earth'

Image
IANS Washington
Last Updated : Apr 19 2014 | 10:40 AM IST

Whenever an asteroid or a comet hit the earth in the past, the impact melted tonnes of soil and rock, some of which formed glass as it cooled. Now, a thrilling discovery has found that these impact glasses stored the signatures of ancient life at the time of the impact.

Several such impact glasses have been unearthed from the soil of eastern Argentina, south of Buenos Aires.

These impact glasses are 6,000 to 9 million years old.

"One of those impacts, dated to around three million years ago, coincides with the disappearance of 35 animal species as reported earlier," said Pete Schultz, a geologist from Brown University in Rhode Island who led the study.

The discovery also suggests that impact glasses could be a good place to look for signs of ancient life on Mars.

"We know these were major impacts because of how far the glass is distributed and how big the chunks are. These glasses are present in different layers of sediment throughout an area about the size of Texas," Schultz noted.

"These impact glasses preserve plant morphology from macro features all the way down to the micron scale. It is really remarkable," Schultz added.

The glass samples contain centimetre-size leaf fragments, including intact structures like papillae, tiny bumps that line leaf surfaces.

Chemical analysis of the samples also revealed the presence of organic hydrocarbons, the chemical signatures of living matter.

To understand how these structures and compounds could have been preserved, the lab experiments showed that plant material was preserved when the samples were quickly heated to above 1,500 degrees celsius - at the time of the asteroid or comet impact.

The soil conditions in Argentina that contributed to the preservation of samples in this study are not unlike soils found on Mars.

The Pampas region of Argentina is covered with thick layers of windblown sediment called loess.

"Much of the surface of Mars is covered in a loess-like dust, and the same mechanism that preserved the Argentine samples could also work on Mars," Schultz said in the study published in the journal Geology Magazine.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 19 2014 | 10:26 AM IST

Next Story