Distant tiny spinning star discovered

Image
IANS Melbourne
Last Updated : May 07 2014 | 5:16 PM IST

Using the 'empty' space between stars and galaxies that is made up of sparsely spread charged particles as a giant lens, researchers have made a measurement of a distant rotating neutron star that is believed to be the most precise till now.

The new measurement is one million times more precise than the previous world's best.

Neutron stars were particularly interesting objects to study, as some of them - called pulsars - gave off pulsed radio waves whose beams swept across telescopes at regular intervals.

The researchers were able to use the interstellar medium, the 'empty' space between stars and galaxies as a giant lens to magnify and look closely at the radio wave emission from the pulsar 'B0834+06r'.

This technique yielded the highest resolution measurement ever achieved, equivalent to being able to see the double-helix structure of our genes from the Moon!

"Compared to other objects in space, neutron stars are tiny - only tens of kilometres in diameter - so we need extremely high resolution to observe them and understand their physics," said Jean-Pierre Macquart from Curtin University in Australia.

"More than 45 years since astronomers discovered pulsars, we still do not understand the mechanism by which they emit radio wave pulses," he noted.

The researchers found they could use the distortions of these pulse signals as they passed through the turbulent interstellar medium to reconstruct a close in view of the pulsar from thousands of individual sub-images of the pulsar.

The previous record using combined views from many telescopes was an angular resolution of 50 microarcseconds.

But the 'interstellar lens' can get down to 50 picoarcseconds, or a million times more detail, resolving areas of less than 5km in the emission region, the researchers showed.

"Our new method can take this technology to the next level and finally get to the bottom of some hotly debated theories about pulsar emission," said Ue-Li Pen of the Canadian Institute of Theoretical Astrophysics.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 07 2014 | 5:14 PM IST

Next Story