The Harvard University has teamed up with Google to develop a machine learning-based model to predict aftershock locations post a quake. It may help in the deployment of emergency services and assist in evacuation plans, a researcher said.
"We teamed up with machine learning experts at Google to see if we could apply deep learning to explain where aftershocks might occur," Phoebe DeVries, Post-Doctoral student at the Harvard, wrote in a Google blog post.
Earthquakes typically occur in sequences -- an initial "mainshock" (the event that usually gets the headlines) is often followed by a set of "aftershocks."
Though these aftershocks are usually smaller than the main shock, in some cases, they may significantly hamper recovery efforts.
Even though the timing and size of aftershocks were understood and explained by established empirical laws, forecasting the locations of these events has proven to be more challenging.
Using deep learning algorithms, the team analysed a database of information on more than 118 major earthquakes from around the world, to predict where aftershocks might occur.
From there, they applied a neural net to analyse the relationships between static stress changes caused by the mainshocks and aftershock locations. The algorithm was able to identify useful patterns.
They developed a system, detailed in the journal Nature, that, while still imprecise, was able to forecast aftershocks significantly better than random assignment.
The novel model opens up possibilities for finding potential physical theories that may allow us to better understand natural phenomena, DeVries noted.
"This machine-learning-driven insight provides improved forecasts of aftershock locations and identifies physical quantities that may control earthquake triggering during the most active part of the seismic cycle," the researchers stated in the paper.
--IANS
rt/in/sed
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
