Indian American researcher gets $500,000 Science Foundation award

Image
IANS Washington
Last Updated : Feb 12 2015 | 10:50 AM IST

Gurpreet Singh, an Indian American assistant professor of mechanical and nuclear engineering at Kansas State University, has received a $500,000 National Science Foundation Career award for his research on nanosheets.

The prestigious award will also help Singh organize educational activities for high school students and teachers.

Singh has received the award for his research on "Scalable liquid exfoliation processing of ultrathin two-dimensional metal dichalcogenides nanosheets for energy storage devices," according to a University release.

He will use the award to develop ultrathin metal sheets that can help produce better rechargeable batteries, supercapacitors and catalysts for photoelectrochemical hydrogen production.

Singh also plans to organize hands-on educational activities, including nanotechnology-oriented summer workshops for high school science teachers and female high school students.

"I want to create excitement about the opportunities in nanotechnology and also make others aware of the challenges related to scalable manufacture and high-cost that is currently hindering introduction in practical applications," Singh said.

With his Career award, Singh will study large-scale production of ultrathin sheets - a few atoms thick and several micrometers wide - of transition metal dichalcogenides, or TMDs. Nearly 40 types of TMDs have been identified, including naturally occurring molybdenite.

Little is known about the structure of TMDs and their mechanical, electrical and electrochemical properties, Singh said.

Some of TMDs' physical and chemical properties can address energy-related concerns. For these TMDs to improve technology, they must be produced in ultrathin sheets, Singh said.

Bulk quantities of nanosheets are necessary for energy applications, including rechargeable batteries, supercapacitors and catalysts for photo-electrochemical hydrogen production.

No current method is available to cost-effectively produce atomically thin TMDs in large quantifies, Singh said. His research aims to make that possible.

"For long-term sustainability it is important to look at alternative energy production routes as well as methods for efficient energy storage and distribution," Singh said.

"This requires exploration into new materials and designs that can offer superior performance with improved efficiency and at a fraction of the cost."

Some of Singh's other research has focused on using graphene oxide to improve sodium- and lithium-ion flexible batteries and creating carbon nanotubes for better laser detectors and rechargeable batteries.

--Indo-Asiain News Service

ak/tb

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 12 2015 | 10:46 AM IST

Next Story