Researchers,, including one of an Indian-origin, have developed a novel machine-learning framework that can distinguish between low and high-risk prostate cancer with more precision than ever before, according to a new study.
The study conducted by the Icahn School of Medicine at Mount Sinai and Keck School of Medicine at the University of Southern California (USC), showed that the framework is intended to help physicians -- in particular, radiologists -- more accurately identify treatment options for prostate cancer patients, lessening the chance of unnecessary clinical intervention.
Presently, the standard methods used to assess prostate cancer risk are multiparametric magnetic resonance imaging (mpMRI), which detects prostate lesions, and the Prostate Imaging Reporting and Data System, version 2 (PI-RADS v2), a five-point scoring system that classifies lesions found on the mpMRI.
However, current tools used to predict prostate cancer progression are generally subjective in nature, leading to differing interpretations among clinicians.
The findings, published in Scientific Reports, showed that combining machine learning with radiomics -- a branch of medicine that uses algorithms to extract large amounts of quantitative characteristics from medical images -- researchers were able to classify patients' prostate cancer with high sensitivity and an even higher predictive value.
Hence, the approach has been proposed to remedy this drawback.
"By rigorously and systematically combining machine learning with radiomics, our goal is to provide radiologists and clinical personnel with a sound prediction tool that can eventually translate to more effective and personalised patient care," said Gaurav Pandey, Assistant Professor at the Icahn School of Medicine at Mount Sinai.
The pathway to predicting prostate cancer progression with high accuracy is ever improving, and we believe our objective framework is a much-needed advancement, the study noted.
--IANS
pb/ksk
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
