Researchers develop new prostate cancer prediction tool: Study

Image
IANS New York
Last Updated : Feb 08 2019 | 11:45 AM IST

Researchers,, including one of an Indian-origin, have developed a novel machine-learning framework that can distinguish between low and high-risk prostate cancer with more precision than ever before, according to a new study.

The study conducted by the Icahn School of Medicine at Mount Sinai and Keck School of Medicine at the University of Southern California (USC), showed that the framework is intended to help physicians -- in particular, radiologists -- more accurately identify treatment options for prostate cancer patients, lessening the chance of unnecessary clinical intervention.

Presently, the standard methods used to assess prostate cancer risk are multiparametric magnetic resonance imaging (mpMRI), which detects prostate lesions, and the Prostate Imaging Reporting and Data System, version 2 (PI-RADS v2), a five-point scoring system that classifies lesions found on the mpMRI.

However, current tools used to predict prostate cancer progression are generally subjective in nature, leading to differing interpretations among clinicians.

The findings, published in Scientific Reports, showed that combining machine learning with radiomics -- a branch of medicine that uses algorithms to extract large amounts of quantitative characteristics from medical images -- researchers were able to classify patients' prostate cancer with high sensitivity and an even higher predictive value.

Hence, the approach has been proposed to remedy this drawback.

"By rigorously and systematically combining machine learning with radiomics, our goal is to provide radiologists and clinical personnel with a sound prediction tool that can eventually translate to more effective and personalised patient care," said Gaurav Pandey, Assistant Professor at the Icahn School of Medicine at Mount Sinai.

The pathway to predicting prostate cancer progression with high accuracy is ever improving, and we believe our objective framework is a much-needed advancement, the study noted.

--IANS

pb/ksk

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 08 2019 | 11:36 AM IST

Next Story