Scientists use stem cells to grow 3D lung-in-a-dish

Image
IANS New York
Last Updated : Sep 18 2016 | 4:57 PM IST

A team of researchers has created three-dimensional lung "organoids" -- laboratory-grown lung-like tissue -- to study diseases, including idiopathic pulmonary fibrosis.

The 3D dimensional drug has been created by coating tiny gel beads with lung-derived stem cells and allowing them to self-assemble into the shape of air sacs found in human lungs.

"While we haven't built a fully functional lung, we have been able to take lung cells and place them in the correct geometrical spacing and pattern to mimic a human lung," said Brigitte Gomperts, Associate Professor, at the University of California, at Los Angeles in the US.

Idiopathic pulmonary fibrosis is a chronic lung disease characterised by scarring of the lungs. The scarring makes the lungs thick and stiff, which over time results in progressively worsening shortness of breath and lack of oxygen to the brain and vital organs.

To study the effect of genetic mutations or drugs on lung cells, researchers have previously relied on two-dimensional cultures of the cells. But when they take cells from people with idiopathic pulmonary fibrosis and grow them on these flat cultures, the cells appear healthy.

Gomperts and her colleagues, in the study published in the journal Stem Cells Translational Medicine, started with stem cells created using cells from adult lungs. They used those cells to coat sticky hydrogel beads and then they partitioned these beads into small wells, each only seven millimetres across.

Inside each well, the lung cells grew around the beads, which linked them and formed an evenly distributed three-dimensional pattern. To show that these tiny organoids mimicked the structure of actual lungs, the researchers compared the lab-grown tissues with real sections of human lung.

"The technique is very simple. We can make thousands of reproducible pieces of tissue that resemble lung and contain patient-specific cells," said Dan Wilkinson, researcher at the University of California, Los Angeles.

Moreover, when the researchers added certain molecular factors to the 3D cultures, the lungs developed scars similar to those seen in the lungs of people who have idiopathic pulmonary fibrosis -- something that could not be accomplished using two-dimensional cultures of these cells.

--IANS

som/ask/dg

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 18 2016 | 4:46 PM IST

Next Story