Water spotted at Jupiter's Great Red Spot: NASA

Image
IANS Washington
Last Updated : Aug 30 2018 | 5:05 PM IST

Looking at the depths of the Jupiter's Great Red Spot, a storm that has been raging on the planet for over 350 years, NASA scientists have found water above the planet's deepest clouds.

The team led by Gordon l. Bjoraker, Astrophysicist at NASA's Goddard Space flight center in Maryland, US, were looking from ground-based telescopes at wavelengths sensitive to thermal radiation leaking from the depths of Jupiter's persistent storm, when they detected the chemical signatures of water above the planet's deepest clouds.

The pressure of the water, combined with the measurements of another oxygen-bearing gas, carbon monoxide, imply that Jupiter has two to nine times more oxygen than the sun.

This finding supports theoretical and computer-simulation models that have predicted abundant water (H2O) on Jupiter, the scientists said.

"The moons that orbit Jupiter are mostly water ice, so the whole neighborhood has plenty of water. Why wouldn't the planet -- which is this huge gravity well, where everything falls into it -- be water rich, too?" Bjoraker said in a statement.

The location of the water cloud, plus the amount of carbon monoxide that the researchers identified on Jupiter, confirms that Jupiter is rich in oxygen and, thus, water, Bjoraker explained.

"Jupiter's water abundance will tell us a lot about how the giant planet formed, but only if we can figure out how much water there is in the entire planet," said Steven M. Levin, from NASA's Jet Propulsion Laboratory in California.

The revelation was stirring given that the team's experiment could have easily failed. The Great Red Spot is full of dense clouds, which makes it hard for electromagnetic energy to escape and teach astronomers anything about the chemistry within.

"It turns out they're not so thick that they block our ability to see deeply," Bjoraker noted.

The data collected will supplement the information NASA's Juno spacecraft is gathering as it circles the planet from north to south once every 53 days.

If Juno returns similar water findings, thereby backing Bjoraker's ground-based technique, it could open a new window into solving the water problem, said Goddard's Amy Simon, a planetary atmospheres expert.

"If it works, then maybe we can apply it elsewhere, like Saturn, Uranus or Neptune, where we don't have a Juno," she said.

--IANS

rt/anp/sed

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 30 2018 | 5:00 PM IST

Next Story