150-year-old drug may improve radiation therapy for cancer: Study

Image
Press Trust of India Washington
Last Updated : Oct 18 2018 | 12:15 PM IST

A drug first identified 150 years ago and used as a smooth-muscle relaxant could make tumours more sensitive to radiation therapy, according to a study.

Researchers from Ohio State University (OSU) in the US found that the drug called papaverine, inhibits the respiration of mitochondria, the oxygen-consuming and energy-making components of cells, and sensitises model tumours to radiation.

The study, published in the journal Proceedings of the National Academy of Sciences, found that the drug does not affect the radiation sensitivity of well-oxygenated normal tissues.

The researchers showed that modifying the papaverine molecule might improve the safety of the molecule and could represent a new class of radiosensitising drugs that have fewer side effects.

"We know that hypoxia (deficiency in the amount of oxygen reaching the tissues) limits the effectiveness of radiation therapy, and that's a serious clinical problem because more than half of all people with cancer receive radiation therapy at some point in their care," said Nicholas Denko, a professor at OSU.

"We found that one dose of papaverine prior to radiation therapy reduces mitochondrial respiration, alleviates hypoxia, and greatly enhances the responses of model tumours to radiation," Denko said.

Radiation kills cancer cells in two ways: directly, by damaging DNA, and indirectly, by generating reactive, damage-causing molecules called oxygen radicals.

Hypoxic conditions reduce the generation of radiation-induced DNA damage and the effective toxicity of a dose of radiation.

"If malignant cells in hypoxic areas of a tumour survive radiation therapy, they can become a source of tumour recurrence. It is critical that we find ways to overcome this form of treatment resistance," Denko said.

Tumour hypoxia is a consequence of oxygen demand and supply. Cancer cells require high levels of oxygen to fuel their rapid growth, which can be so great that it outpaces the delivery of oxygen from the blood supply.

Poorly formed blood vessels in the tumour are not efficient at delivering oxygen and other nutrients.

Insufficient oxygen causes pockets of dead, necrotic cells surrounded by areas of hypoxia. Cancer cells in hypoxic regions at a distance from the blood vessel can also be beyond the reach of chemotherapy and be resistant to radiation.

Strategies to overcome radiation resistance typically focus on delivering more oxygen to the tumour, Denko said.

"But these attempts have met with little clinical success because tumours have poorly formed vasculature," he said.

"We took the opposite approach. Rather than attempting to increase oxygen supply, we reduced the oxygen demand, and these findings suggest that papaverine or a derivative is a promising metabolic radiosensitiser," Denko said.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 18 2018 | 12:15 PM IST

Next Story