Two-dimensional (2D) materials are a class of nanomaterials that are only a few atoms in thickness.
Electrons in these materials are free to move in the two-dimensional plane, but their restricted motion in the third direction is governed by quantum mechanics.
The 2D materials such as graphene, transition metal dichalcogenides and black phosphorus have garnered tremendous attention from scientists for their amazing properties and potential to improve electronic and photonic devices.
Researchers, including those from the University of Minnesota and Stanford University in the US, examined the optical properties of several dozens of 2D materials.
"With our devices, we want speed, efficiency and we want small. Polaritons could offer the answer," said Tony Low, a University of Minnesota electrical and computer engineering assistant professor and lead author of the study.
By exciting the polaritons in 2D materials, electromagnetic energy can be focused down to a volume a million times smaller compared to when its propagating in free space.
"Layered two-dimensional materials have emerged as a fantastic toolbox for nano-photonics and nano-optoelectronics, providing tailored design and tunability for properties that are not possible to realise with conventional materials," said Frank Koppens, group leader at the Institute of Photonic Sciences at Barcelona, Spain, and co-author of the study.
"The study of the plasmon-polaritons in two-dimensions is not only a fascinating research subject, but also offers possibilities for important technological applications," said Phaedon Avoruris, IBM Fellow at the IBM T J Watson Research Center.
"For example, an atomic layer material like graphene extends the field of plasmonics to the infrared and terahertz regions of the electromagnetic spectrum allowing unique applications ranging from sensing and fingerprinting minute amounts of biomolecules, to applications in optical communications, energy harvesting and security imaging," said Avoruris.
The study also examined the possibilities of combining 2D materials. Researchers point out that every 2D material has advantages and disadvantages. Combining these materials create new materials that may have the best qualities of both.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
