AI tool can predict life expectancy of heart failure patients: Study

Image
Press Trust of India Los Angeles
Last Updated : Nov 14 2019 | 2:10 PM IST

Researchers have developed a new artificial intelligence (AI) tool that can predict the life expectancy of heart failure patients, an advance that may allow clinicians to make more informed decisions while caring for heart patients.

The researchers, including those from the University of California (UC) at San Diego in the US, said while predicting mortality is important in patients with heart failure, current strategies for evaluating this risk are only modestly successful and can be subjective.

As part of the study, published in the journal European Journal of Heart Failure, the researchers developed a machine learning algorithm based on de-identified electronic health records data of nearly 6,000 heart failure patients at UC San Diego Health in the US.

They developed a risk score that determined low- and high-risk of death by identifying eight variables collected from the majority of patients with heart failure.

These variables include blood pressure during heart relaxation, the amount of white blood cells, albumin, haemoglobin, platelets, and urea and nitrogen in the blood, and the level of creatinine -- a chemical waste product from amino acid breakdown that is excreted via urine, the study noted.

Using these inputs, the researchers said, the newly developed model could accurately predict life expectancy 88 per cent of the time, and performed substantially better than other popular published models.

"This tool gives us insight, for example, on the probability that a given patient will die from heart failure in the next three months or a year," said Eric Adler, co-author of the study from UC San Diego.

The researchers also tested the model's effectiveness using de-identified patient data from UC San Francisco in the US, and a database derived from 11 European medical centres.

"It was successful in those cohorts as well. Being able to repurpose our findings in independent populations is of utmost importance, thus validating our methodology and its results," said study co-author Avi Yagil from UC San Diego.

The researchers, however, added that the study needs further validation with more tests on larger groups of people.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 14 2019 | 2:10 PM IST

Next Story