Ancient Earth was oxygen-rich: study

Image
Press Trust of India Melbourne
Last Updated : May 16 2016 | 4:42 PM IST
Earth's upper atmosphere contained about the same amount of oxygen 2.7 billion years ago as today, according to a new surprise finding that challenges the accepted view of our planet's atmosphere.
Researchers used the oldest fossil micrometeorites - space dust - ever found to make the discovery about the chemistry of Earth's atmosphere.
The findings show that the ancient Earth's upper atmosphere contained about the same amount of oxygen as today, and that a methane haze layer separated this oxygen-rich upper layer from the oxygen-starved lower atmosphere.
Researchers from the Monash University, the Australian Synchrotron and Imperial College London extracted micrometeorites from samples of ancient limestone collected in Western Australia.
"Using cutting-edge microscopes we found that most of the micrometeorites had once been particles of metallic iron - common in meteorites - that had been turned into iron oxide minerals in the upper atmosphere, indicating higher concentrations of oxygen than expected," said Andrew Tomkins, from the Monash University.
"This was an exciting result because it is the first time anyone has found a way to sample the chemistry of the ancient Earth's upper atmosphere," Tomkins said.
Researchers performed calculations that showed oxygen concentrations in the upper atmosphere would need to be close to modern day levels to explain the observations.
"This was a surprise because it has been firmly established that the Earth's lower atmosphere was very poor in oxygen 2.7 billion years ago; how the upper atmosphere could contain so much oxygen before the appearance of photosynthetic organisms was a real puzzle," said Matthew Genge, from Imperial College London.
The results suggest the Earth at this time may have had a layered atmosphere with little vertical mixing, and higher levels of oxygen in the upper atmosphere produced by the breakdown of carbon dioxide (CO2) by ultraviolet light.
"A possible explanation for this layered atmosphere might have involved a methane haze layer at middle levels of the atmosphere," Tomkins said.
"The methane in such a layer would absorb UV light, releasing heat and creating a warm zone in the atmosphere that would inhibit vertical mixing," he said.
"It is incredible to think that by studying fossilised particles of space dust the width of a human hair, we can gain new insights into the chemical makeup of Earth's upper atmosphere, billions of years ago," he added.
The study was published in the journal Nature.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 16 2016 | 4:42 PM IST

Next Story