A continuous state of vigilance generates a different type of memory in mice than a momentary startle, and these differences are linked to distinct chemical processes in their brains, according to a study which may shed light on how traumatic memories are consolidated.
Researchers, including those at the RIKEN Center for Brain Science (CBS) in Japan, visualised new chemical interactions in the living mouse brain for the first time, observing molecular pathways which support memory function.
They observed these processes in the star-shaped brain cells called astrocytes, revealing how these cells help nerves during memory formation, according to the study, published in the journal Nature Communications.
Previous studies had shown that noradrenaline -- a hormone that is also a nerve activator -- is important for modifying the junctions between neurons, involved in forming and consolidating memories.
These studies had established that the astrocytes were crucial mediators of the chemical reactions in these junctions, the researchers said.
In the current study, the scientists artificially stimulated brain cells with light -- an emerging technique called optogenetics -- and induced noradrenaline release.
They stimulated neurons originating in a part of the brain called the locus coeruleus, which is located in the brain stem region, and involved in biological responses to stress and panic.
According to the researchers, the hormone's release launched two distinct chains of molecular events, the first involving calcium activity, and the second cAMP -- a signalling molecule whose levels are interpreted by cells to understand the status of chemical reactions in other cells.
Following the noradrenaline release, calcium levels in the astrocytes quickly increased, while the cAMP levels had a slower but more sustained increase, the study noted.
"We think these fast and slow dynamics are significant because calcium elevation in astrocytes promotes synaptic plasticity, or the ability of cells to form new memory connections, while cAMP elevation mobilises energy metabolism for memory consolidation," said Hajime Hirase, study senior author from RIKEN CBS.
In a second experiment, the scientists gave the mice a foot shock coupled with a sound to create a fear memory.
Hearing the sound again, they said, the mice froze in anticipation of a shock.
The team found that during these cases, the cAMP levels were noticeably elevated, while calcium levels also rose but quickly tapered off.
"When mice are in this sustained state of vigilance, a lot of noradrenaline is released, coupled with gradually building cAMP," explained study first author Yuki Oe from RIKEN CBS.
"This reflects how the astrocytes support the formation of fear memory," Oe added.
The study noted that neither calcium, nor cAMP responses were seen in mice which were given noradrenaline-blocking drugs, indicating that the hormone's release is the trigger for these changes.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
