Drug target for Ebola-like viruses identified

Image
Press Trust of India Toronto
Last Updated : May 11 2015 | 5:42 PM IST
A potential mechanism to combat diseases caused by haemorrhagic fever viruses such as Ebola has been discovered, scientists say.
These diseases present a dramatic risk to human health as they often spread quickly and kill a high percentage of infected individuals, as demonstrated by the recent Ebola outbreaks, researchers said.
Effective treatments such as vaccines and drug therapies are not available for many of these infections since the outbreaks mostly occur in developing countries with limited financial resources.
Moreover, the genomes of many haemorrhagic fever viruses mutate rapidly, enabling them to quickly adapt to potential drug treatments and evade the immune system.
"Although our work does not directly lead to treatments on a short term, it does identify a process where the virus could be vulnerable to drug therapy, or how we might design an attenuated viral strain for vaccine development," said first author Normand Cyr, a postdoctoral researcher at the University of Montreal.
"Identification of the Achilles heels of haemorrhagic fever viruses like the Rift Valley fever virus will help inspire additional research and eventually lead to the development of new therapeutic strategies to treat these deadly tropical infections," said Cyr.
Researchers used Nuclear Magnetic Resonance (NMR) spectroscopy studies to investigate the structural properties of an important viral protein required for virulence of the Rift Valley fever virus, a virus that causes infections in both humans and livestock similar to the Ebola virus.
Viral proteins such as the Non-structural protein (NSs) studied in the research bind to the transcription machinery of human cells via the p62 subunit of the TFIIH protein complex, which leads to the formation of nuclear filaments that are essential for propagation of the virus.
"The structural details reported show that the viral protein uses a simple so-called OXaV motif that is similar to that found in human DNA repair proteins, and blocking this binding event with drugs would certainly weaken the virulence of the virus," said senior co-author Professor James Omichinski, who supervised the research.
The research was published in the journal PNAS.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 11 2015 | 5:42 PM IST

Next Story