Scientists from Stanford University have identified key acoustic characteristics of the 2011 Japan earthquake that indicated it would cause a large tsunami. The same technique could be used to create an early warning system for massive tsunamis, they believe.
On March 11, 2011, a magnitude 9.0 undersea earthquake occurred 64 kms off the shore of Japan. The earthquake generated an unexpectedly massive tsunami that washed over eastern Japan roughly 30 minutes later, killing more than 15,800 people and injuring more than 6,100.
If correctly interpreted, they could have offered a warning that a large tsunami was on the way.
Although various systems can detect undersea earthquakes, they can't reliably tell which will form a tsunami, or predict the size of the wave. There are ocean-based devices that can sense an oncoming tsunami, but they typically provide only a few minutes of advance warning.
Because the sound from a seismic event will reach land well before the water itself, the researchers suggest that identifying the specific acoustic signature of tsunami-generating earthquakes could lead to a faster-acting warning system for massive tsunamis.
Eric Dunham, an assistant professor of geophysics in the School of Earth Sciences, and Jeremy Kozdon, a postdoctoral researcher, began using the cluster of supercomputers at Center for Computational Earth and Environmental Science (CEES) to simulate how the tremors moved through the crust and ocean.
The researchers built a high-resolution model that incorporated the known geologic features of the Japan Trench and used CEES simulations to identify possible earthquake rupture histories compatible with the available data.
The model also generated acoustic data; an interesting revelation of the simulation was that tsunamigenic surface-breaking ruptures, like the 2011 earthquake, produce higher amplitude ocean acoustic waves than those that do not.
The model showed how those sound waves would have travelled through the water and indicated that they reached shore 15 to 20 minutes before the tsunami.
"We've found that there's a strong correlation between the amplitude of the sound waves and the tsunami wave heights," Dunham said.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
