First 'terminator' polymer regenerates by itself

Image
Press Trust of India Washington
Last Updated : Sep 15 2013 | 5:15 PM IST
Scientists have developed the first self-healing polymer that spontaneously and independently repairs itself without any intervention.
Self-healing polymers mend themselves by reforming broken cross-linking bonds. However, the cross-linking healing mechanism usually requires an external stimulus.
Triggers to promote bond repair include energy inputs, such as heat or light, or specific environmental conditions, such as pH.
Self-healing polymers that can spontaneously achieve quantitative healing in the absence of a catalyst have never been reported before, until now.
Ibon Odriozola previously came close when his group at the CIDETEC Centre for Electrochemical Technologies in Spain developed self-healing silicone elastomers using silver nanoparticles as cross-linkers.
Unfortunately, an applied external pressure was required and the expensive sliver component disfavoured commercialisation. But now they have achieved their goal to prepare self-healing elastomers from common polymeric starting materials using a simple and inexpensive approach.
An industrially familiar, permanently cross-linked poly(urea-urethane) elastomeric network was demonstrated to completely mend itself after being cut in two by a razor blade, researchers said.
It is the metathesis reaction of aromatic disulphides, which naturally exchange at room temperature, that causes regeneration.
Ibon stresses the use of commercially available materials is important for industrial applications. He says the polymer behaves as if it was alive, always healing itself and has dubbed it a "terminator" polymer - a tribute to the shape-shifting, molten T-1000 terminator robot from the Hollywood film Terminator 2.
It acts as a velcro-like sealant or adhesive, displaying an impressive 97 per cent healing efficiency in just two hours and does not break when stretched manually.
David Mecerreyes, a polymer chemistry specialist at the University of the Basque Country in Spain, sees opportunities to use this elastomer to improve the security and duration of many plastic parts, for example in cars, houses, electrical components and bio-materials.
"The introduction of a room temperature exchangeable covalent bond in classic thermoset elastomers provides unique autonomous self-healing abilities without comprising the pristine material properties," said Richard Hoogenboom, head of the Supramolecular Chemistry group at Ghent University in Belgium.
"Close resemblance of this novel self-healing thermoset elastomer with current commercial materials makes it highly interesting for extending the lifetime of such materials," said Hoogenboom.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 15 2013 | 5:15 PM IST

Next Story