Fully functional human cartilage grown in lab

Image
Press Trust of India New York
Last Updated : May 01 2014 | 1:06 PM IST
In a breakthrough, scientists have successfully grown fully functional human cartilage for the first time in vitro from stem cells derived from human fat tissue.
The study by Columbia University researchers demonstrates new ways to better mimic the enormous complexity of tissue development, regeneration, and disease.
"We've been able - for the first time - to generate fully functional human cartilage from mesenchymal stem cells by mimicking in vitro the developmental process of mesenchymal condensation," said Gordana Vunjak-Novakovic from Columbia Engineering, who led the study.
"This could have clinical impact, as this cartilage can be used to repair a cartilage defect, or in combination with bone in a composite graft grown in lab for more complex tissue reconstruction," said Vunjak-Novakovic.
Vunjak-Novakovic's team succeeded in growing cartilage with physiologic architecture and strength by radically changing the tissue-engineering approach.
The general approach to cartilage tissue engineering has been to place cells into a hydrogel and culture them in the presence of nutrients and growth factors and sometimes also mechanical loading.
But using this technique with adult human stem cells has invariably produced mechanically weak cartilage.
So researchers wondered if a method resembling the normal development of the skeleton could lead to a higher quality of cartilage.
Sarindr Bhumiratana, postdoctoral fellow in Vunjak-Novakovic's Laboratory for Stem Cells and Tissue Engineering, came up with a new approach: inducing the mesenchymal stem cells to undergo a condensation stage as they do in the body before starting to make cartilage.
He discovered that this simple but major departure from how things were usually being done resulted in a quality of human cartilage not seen before.
The team performed measurements showing that the lubricative property and compressive strength - the two important functional properties - of the tissue-engineered cartilage approached those of native cartilage.
The researchers then used their method to regenerate large pieces of anatomically shaped and mechanically strong cartilage over the bone, and to repair defects in cartilage.
"Our whole approach to tissue engineering is bio-mimetic in nature, which means that our engineering designs are defined by biological principles," Vunjak-Novakovic noted.
The study was published in the journal PNAS.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 01 2014 | 1:06 PM IST

Next Story