Gene key to developing stem cells found

Image
Press Trust of India Washington
Last Updated : Jul 19 2014 | 12:59 PM IST
Researchers have found a gene that could be key to the development of stem cells - cells that can potentially save millions of lives by morphing into practically any cell in the body.
The gene, known as ASF1A, is at least one of the genes responsible for the mechanism of cellular reprogramming, a phenomenon that can turn one cell type into another, which is key to the making of stem cells.
Researchers at the Michigan State University analysed more than 5,000 genes from a human egg, or oocyte, before determining that the ASF1A, along with another gene known as OCT4 and a helper soluble molecule, were the ones responsible for the reprogramming.
"This has the potential to be a major breakthrough in the way we look at how stem cells are developed," said Elena Gonzalez-Munoz, a former MSU post-doctoral researcher and first author of the paper.
"Researchers are just now figuring out how adult somatic cells such as skin cells can be turned into embryonic stem cells. Hopefully this will be the way to understand more about how that mechanism works," said Gonzalez-Munoz.
In 2006, an MSU team identified the thousands of genes that reside in the oocyte. It was from those, they concluded, that they could identify the genes responsible for cellular reprogramming.
In 2007, a team of Japanese researchers found that by introducing four other genes into cells, stem cells could be created without the use of a human egg. These cells are called induced pluripotent stem cells, or iPSCs.
"This is important because the iPSCs are derived directly from adult tissue and can be a perfect genetic match for a patient," said Jose Cibelli, an MSU professor of animal science and a member of the team.
The researchers say that the genes ASF1A and OCT4 work in tandem with a ligand, a hormone-like substance that also is produced in the oocyte called GDF9, to facilitate the reprogramming process.
"We believe that ASF1A and GDF9 are two players among many others that remain to be discovered which are part of the cellular-reprogramming process," Cibelli said.
The finding was published in the journal Science.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jul 19 2014 | 12:59 PM IST

Next Story