The discovery may point to more ways to diagnose health issues from retinal images, researchers said.
"Using deep learning algorithms trained on data from 284,335 patients, we were able to predict cardiovascular risk factors from retinal images with surprisingly high accuracy for patients from two independent datasets of 12,026 and 999 patients," Lily Peng from the Google Brain Team wrote in a blog post.
The algorithm could distinguish the retinal images of a smoker from that of a non-smoker 71 per cent of the time.
The algorithm was fairly accurate at predicting the risk of a cardiovascular event directly, said Peng.
"Our algorithm used the entire image to quantify the association between the image and the risk of heart attack or stroke," she said.
Given the retinal image of one patient who later experienced a major cardiovascular event (such as a heart attack) and the image of another patient who did not, the algorithm could pick out the heart patient 70 per cent of the time.
"We opened the 'black box' by using attention techniques to look at how the algorithm was making its prediction. These techniques allow us to generate a heatmap that shows which pixels were the most important for a predicting a specific cardiovascular risk factor," said Peng.
For example, the algorithm paid more attention to blood vessels for making predictions about blood pressure, as shown in the image above. Explaining how the algorithm is making its prediction gives doctor more confidence in the algorithm itself.
However, with medical images, observing and quantifying associations can be difficult because of the wide variety of features, patterns, colours, values and shapes that are present in real images.
"Our approach uses deep learning to draw connections between changes in the human anatomy and disease, akin to how doctors learn to associate signs and symptoms with the diagnosis of a new disease," Peng said.
This could help scientists generate more targeted hypotheses and drive a wide range of future research.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
