Researchers at the Indian Institute of Technology (IIT) have developed materials that can produce energy from water on a small scale to help households support the concept of decentralisation of energy sources.
In the centralised energy generation model, one large plant produces energy for an entire region. In contrast, the decentralised energy model introduces a large number of small generation devices that can be employed to generate energy in every household.
The excess energy produced in the households can be transported to nearby areas, where there is an excessive need for energy.
The researchers of IIT Guwahati employed a nanoscale phenomenon called "electrokinetic streaming potential" to harvest energy from flowing water on a small scale like water flowing through household water taps.
Similarly, for "Contrasting Interfacial Activities", different types of semiconducting materials were employed to generate power from stagnant water.
"While hydroelectric power from rivers is the traditional form of blue energy, there have been efforts to harness the power of water in other ways in recent years. One out-of-the-box blue source is electrokinetic energy. When fluids stream through tiny channels that are charged, they can generate an electrical voltage, which may be harnessed through miniaturised generators," Kalyan Raidongia from Department of Chemistry, IIT Guwahati said.
In order to extract power from stagnant water, devices were fabricated by employing doped graphene flakes. The complementary charge transfer activities of the doped graphene flakes-based devices generate power just upon dipping in any kind of water source like a lake, river or sea.
"We have demonstrated that the power output can be improved by thousand times by attaining the best out of these parameters through biconical nanofluidic channels that interconnect tetrahedral and octahedral voids in the close-packed silica spheres.
"Enhancement in the power density can be brought about through control of multiple parameters such as the diameter of the close-packed spheres, number of the spheres, the contact area of the electrodes, and pH of the streaming water, and the team is currently involved in such optimisation efforts," Raidongia said.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
