An international group of astronomers used the European Southern Observatory (ESO)'s 3.6-metre telescope to identify the planet just like Jupiter orbiting at the same distance from a Sun-like star, HIP 11915.
According to current theories, the formation of Jupiter-mass planets plays an important role in shaping the architecture of planetary systems.
Also Read
HIP 11915 is about the same age as the Sun and, furthermore, its Sun-like composition suggests that there may also be rocky planets orbiting closer to the star.
So far, exoplanet surveys have been most sensitive to planetary systems that are populated in their inner regions by massive planets, down to a few times the mass of Earth.
This contrasts with our Solar System, where there are small rocky planets in the inner regions and gas giants like Jupiter farther out.
According to the most recent theories, the arrangement of our Solar System, so conducive to life, was made possible by the presence of Jupiter and the gravitational influence this gas giant exerted on the Solar System during its formative years.
It would seem, therefore, that finding a Jupiter twin is an important milestone on the road to finding a planetary system that mirrors our own, researchers said.
The new discovery was made using HARPS, one of the world's most precise planet-hunting instruments, mounted on the ESO 3.6-metre telescope at the La Silla Observatory in Chile.
Although many planets similar to Jupiter have been found at a variety of distances from Sun-like stars, this newly discovered planet, in terms of both mass and distance from its host star, and in terms of the similarity between the host star and our Sun, is the most accurate analogue yet found for the Sun and Jupiter.
The planet's host, the solar twin HIP 11915, is not only similar in mass to the Sun, but is also about the same age. To further strengthen the similarities, the composition of the star is similar to the Sun's.
The chemical signature of our Sun may be partly marked by the presence of rocky planets in the Solar System, hinting at the possibility of rocky planets also around HIP 11915.
"The quest for an Earth 2.0, and for a complete Solar System 2.0, is one of the most exciting endeavours in astronomy," said Jorge Melendez, from Universidade de Sao Paulo, Brazil, who led the team.
"This discovery is, in every respect, an exciting sign that other solar systems may be out there waiting to be discovered," said Megan Bedell, from the University of Chicago.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
)