Researchers at the University of Kansas working with an international team at the LHC produced quark-gluon plasma with fewer particles than previously thought possible.
The material was discovered by colliding protons with lead nuclei at high energy inside the supercollider's Compact Muon Solenoid detector. Physicists have dubbed the resulting plasma the "littlest liquid."
"Before the CMS experimental results, it had been thought the medium created in a proton on lead collisions would be too small to create a quark-gluon plasma," said Quan Wang, a KU postdoctoral researcher working with the team at CERN.
"The analysis presented in this paper indicates, contrary to expectations, a quark-gluon plasma can be created in very asymmetric proton on lead collisions," he said.
The unexpected discovery was said by senior scientists associated with the CMS detector to shed new light on high-energy physics.
"This is the first paper that clearly shows multiple particles are correlated to each other in proton-lead collisions, similar to what is observed in lead-lead collisions where quark gluon plasma is produced," said Yen-Jie Lee, assistant professor of physics at Massachusetts Institute of Technology (MIT).
Researchers described quark-gluon plasma as a very hot and dense state of matter of unbound quarks and gluons - that is, not contained within individual nucleons.
"It's believed to correspond to the state of the universe shortly after the Big Bang," Wang said.
"The interaction between partons - quarks and gluons - within the quark-gluon plasma is strong, which distinguishes the quark-gluon plasma from a gaseous state where one expects little interaction among the constituent particles," he said.
Wang said such experiments might help scientists to better understand cosmic conditions in the instant following the Big Bang.
"While we believe the state of the universe about a microsecond after the Big Bang consisted of a quark-gluon plasma, there is still much that we don't fully understand about the properties of quark-gluon plasma," he said.
The research was published in the journal APS Physics.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
