LHC produces state of matter existing at birth of universe

Image
Press Trust of India Geneva
Last Updated : Sep 06 2015 | 4:22 PM IST
Scientists at CERN have produced tiny droplets of a state of matter thought to have existed right at the birth of the universe, after slamming particles together at high energy in the Large Hadron Collider (LHC).
Researchers at the University of Kansas working with an international team at the LHC produced quark-gluon plasma with fewer particles than previously thought possible.
The material was discovered by colliding protons with lead nuclei at high energy inside the supercollider's Compact Muon Solenoid detector. Physicists have dubbed the resulting plasma the "littlest liquid."
"Before the CMS experimental results, it had been thought the medium created in a proton on lead collisions would be too small to create a quark-gluon plasma," said Quan Wang, a KU postdoctoral researcher working with the team at CERN.
"Indeed, these collisions were being studied as a reference for collisions of two lead nuclei to explore the non-quark-gluon-plasma aspects of the collisions," Wang said.
"The analysis presented in this paper indicates, contrary to expectations, a quark-gluon plasma can be created in very asymmetric proton on lead collisions," he said.
The unexpected discovery was said by senior scientists associated with the CMS detector to shed new light on high-energy physics.
"This is the first paper that clearly shows multiple particles are correlated to each other in proton-lead collisions, similar to what is observed in lead-lead collisions where quark gluon plasma is produced," said Yen-Jie Lee, assistant professor of physics at Massachusetts Institute of Technology (MIT).
"This is probably the first evidence that the smallest droplet of quark gluon plasma is produced in proton-lead collisions," said Lee, co-convener of the CMS heavy-ion physics group.
Researchers described quark-gluon plasma as a very hot and dense state of matter of unbound quarks and gluons - that is, not contained within individual nucleons.
"It's believed to correspond to the state of the universe shortly after the Big Bang," Wang said.
"The interaction between partons - quarks and gluons - within the quark-gluon plasma is strong, which distinguishes the quark-gluon plasma from a gaseous state where one expects little interaction among the constituent particles," he said.
While high-energy particle physics often focuses on detection of subatomic particles, such as Higgs Boson, the new quark-gluon-plasma research instead examines behaviour of a volume of such particles.
Wang said such experiments might help scientists to better understand cosmic conditions in the instant following the Big Bang.
"While we believe the state of the universe about a microsecond after the Big Bang consisted of a quark-gluon plasma, there is still much that we don't fully understand about the properties of quark-gluon plasma," he said.
The research was published in the journal APS Physics.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 06 2015 | 4:22 PM IST

Next Story