University of Washington researchers used an infrared laser to cool water by about two degrees Celsius, becoming the first to solve a decades-old puzzle.
"Typically, when you go to the movies and see Star Wars laser blasters, they heat things up. This is the first example of a laser beam that will refrigerate liquids like water under everyday conditions," said senior author Peter Pauzauskie, UW assistant professor of materials science and engineering.
The discovery could help industrial users "point cool" tiny areas with a focused point of light.
Scientists could also use a laser beam to precisely cool a portion of a cell as it divides or repairs itself, essentially slowing these rapid processes down and giving researchers the opportunity to see how they work.
Researchers chose infrared light for its cooling laser with biological applications in mind, as visible light could give cells a damaging "sunburn."
They demonstrated that the laser could refrigerate saline solution and cell culture media that are commonly used in genetic and molecular research.
They illuminated a single microscopic crystal suspended in water with infrared laser light to excite a unique kind of glow that has slightly more energy than that amount of light absorbed.
This higher-energy glow carries heat away from both the crystal and the water surrounding it.
The laser refrigeration process was first demonstrated in vacuum conditions at Los Alamos National Laboratory in 1995, but it has taken nearly 20 years to demonstrate this process in liquids.
The UW team demonstrated that a low-cost hydrothermal process can be used to manufacture a well-known laser crystal for laser refrigeration applications in a faster, inexpensive and scalable way.
To determine whether the liquid is cooling, the instrument also projects the particle's "shadow" in a way that allows the researchers to observe minute changes in its motion.
As the surrounding liquid cools, the trapped particle slows down, allowing the team to clearly observe the refrigerating effect.
The study was published in the journal PNAS.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
