The model created by Lucas M Stolerman and Stefanella Boatto from Universidade Federal do Rio de Janeiro offers a simplified approach to studying the spread of the dengue fever in urban areas, specifically breaking down the epidemic dynamics across a city and its varying neighbourhoods and populations.
The model is important for studying how varying neighbourhood conditions affect the spread of dengue fever and how to contain it.
For example, some neighbourhoods have standing water allowing large mosquito populations to develop.
The model uses a Susceptible-Infected-Recovered (SIR) approach to disease spread and the network consists of the city's neighbourhoods where local populations are assumed to be well-mixed.
"The SIR-Network model can be used to predict whether local interventions - like cleaning up standing water in containers - in one or two neighbourhoods could affect the prevalence of dengue across the city," said coauthor Daniel Coombs, professor at the University of British Colombia in Canada.
"We give formulae that describe whether an epidemic is possible, in terms of human travel patterns among neighbourhoods, mosquito populations and biting rates in each neighbourhood," Coombs said.
The study also presents fundamental properties of the basic reproduction number (Ro) for their specific model. Ro is the expected number of secondary cases due to a single infection.
The researchers applied the SIR-Network model to dengue fever data, which had been updated several times, including as recent as 2014, from the epidemic outbreak of 2007-2008 in various neighbourhoods of Rio de Janeiro, Brazil, and soon discovered several interesting features of the epidemic.
First, they needed to include a transmission rate that varied over the months of the dengue season to match the available data. The researchers predict that the transmission rate peaks 6 to 8 weeks before the peak incidence of dengue.
Ultimately, the researchers found that results were improved most when a time-infection parameter was introduced to model seasonal climate changes.
The study was published in the SIAM Journal on Applied Mathematics.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
