Moon may get a high-speed broadband connection

Image
Press Trust of India Washington
Last Updated : May 23 2014 | 3:17 PM IST
Future generations, wanting to live and work on the Moon, will not have to miss out on any important action happening on Earth as they would be able to communicate with their home planet via a broadband connection.
Researchers from the Massachusetts Institute of Technology's (MIT) Lincoln Laboratory, working with NASA, demonstrated for the first time that a data communication technology exists that can provide space dwellers with the connectivity we all enjoy here on Earth, enabling large data transfers and even high-definition video streaming.
At the Conference on Lasers and Electro-Optics (CLEO), being held next month in California, US, the team will present new details and the first comprehensive overview of the on-orbit performance of their record-shattering laser-based communication uplink between the Moon and Earth, which beat the previous record transmission speed by a factor of 4,800.
Earlier reports have stated what the team accomplished, but have not provided the details of the implementation.
"This will be the first time that we present both the implementation overview and how well it actually worked," said Mark Stevens of MIT Lincoln Laboratory.
"The on-orbit performance was excellent and close to what we'd predicted, giving us confidence that we have a good understanding of the underlying physics," Stevens said.
The team made history last year when their Lunar Laser Communication Demonstration (LLCD) transmitted data over the 384,633 kilometres between the Moon and Earth at a download rate of 622 megabits per second, faster than any radio frequency (RF) system.
They also transmitted data from the Earth to the Moon at 19.44 megabits per second, a factor of 4,800 times faster than the best RF uplink ever used.
"Communicating at high data rates from Earth to the Moon with laser beams is challenging because of the 400,000 kilometre distance spreading out the light beam," Stevens said.
"It's doubly difficult going through the atmosphere, because turbulence can bend light-causing rapid fading or dropouts of the signal at the receiver," said Stevens.
To outmanoeuvre problems with fading of the signal over such a distance, the demonstration uses several techniques to achieve error-free performance over a wide range of optically challenging atmospheric conditions in both darkness and bright sunlight.
A ground terminal at White Sands, New Mexico, uses four separate telescopes to send the uplink signal to the Moon.
Each telescope is about 6 inches in diameter and fed by a laser transmitter that sends information coded as pulses of invisible infrared light.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 23 2014 | 3:17 PM IST

Next Story