NASA satellites recreate solar eruption in 3D

Image
Press Trust of India Washington
Last Updated : Mar 11 2018 | 5:50 PM IST
Scientists have mapped and recreated solar bursts in 3D using three NASA satellites, an advance that may help predict how such events may affect weather around Earth, endanger spacecraft and astronauts.
The new models can help see how shocks associated with coronal mass ejections (CMEs) propagate from the Sun by combining data from three satellites to produce a much more robust mapping of a CME than any one could do alone.
Much the way ships form bow waves as they move through water, CMEs set off interplanetary shocks when they erupt from the Sun at extreme speeds, propelling a wave of high-energy particles.
These particles can spark space weather events around Earth, endangering spacecraft and astronauts.
Understanding a shock's structure - particularly how it develops and accelerates - is key to predicting how it might disrupt near-Earth space.
However, without a vast array of sensors scattered through space, these things are impossible to measure directly.
Instead, scientists rely upon models that use satellite observations of the CME to simulate the ensuing shock's behaviour.
Researchers from George Mason University and Johns Hopkins University in the US pulled observations of two different eruptions from three spacecraft: ESA/NASA's Solar and Heliospheric Observatory (SOHO) and NASA's twin Solar Terrestrial Relations Observatory (STEREO) satellites.
One CME erupted in March 2011 and the second, in February 2014.
The scientists fit the CME data to their models - one called the "croissant" model for the shape of nascent shocks, and the other the "ellipsoid" model for the shape of expanding shocks - to uncover the 3D structure and trajectory of each CME and shock.
Each spacecraft's observations alone were not sufficient to model the shocks. However, with three sets of eyes on the eruption, each of them spaced nearly evenly around the Sun, the scientists could use their models to recreate a 3D view.
The study, published in the Journal of Space Weather and Space Climate, confirmed long-held theoretical predictions of a strong shock near the CME nose and a weaker shock at the sides.
In time, shocks travel away from the Sun, and thanks to the 3D information, the scientists could reconstruct their journey through space.
The modelling helps scientists deduce important pieces of information for space weather forecasting - in this case, for the first time, the density of the plasma around the shock, in addition to the speed and strength of the energized particles.
All of these factors are key to assessing the danger CMEs present to astronauts and spacecraft.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Mar 11 2018 | 5:50 PM IST

Next Story