The new models can help see how shocks associated with coronal mass ejections (CMEs) propagate from the Sun by combining data from three satellites to produce a much more robust mapping of a CME than any one could do alone.
Much the way ships form bow waves as they move through water, CMEs set off interplanetary shocks when they erupt from the Sun at extreme speeds, propelling a wave of high-energy particles.
Understanding a shock's structure - particularly how it develops and accelerates - is key to predicting how it might disrupt near-Earth space.
However, without a vast array of sensors scattered through space, these things are impossible to measure directly.
Instead, scientists rely upon models that use satellite observations of the CME to simulate the ensuing shock's behaviour.
Researchers from George Mason University and Johns Hopkins University in the US pulled observations of two different eruptions from three spacecraft: ESA/NASA's Solar and Heliospheric Observatory (SOHO) and NASA's twin Solar Terrestrial Relations Observatory (STEREO) satellites.
The scientists fit the CME data to their models - one called the "croissant" model for the shape of nascent shocks, and the other the "ellipsoid" model for the shape of expanding shocks - to uncover the 3D structure and trajectory of each CME and shock.
Each spacecraft's observations alone were not sufficient to model the shocks. However, with three sets of eyes on the eruption, each of them spaced nearly evenly around the Sun, the scientists could use their models to recreate a 3D view.
The study, published in the Journal of Space Weather and Space Climate, confirmed long-held theoretical predictions of a strong shock near the CME nose and a weaker shock at the sides.
The modelling helps scientists deduce important pieces of information for space weather forecasting - in this case, for the first time, the density of the plasma around the shock, in addition to the speed and strength of the energized particles.
All of these factors are key to assessing the danger CMEs present to astronauts and spacecraft.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
