A team of engineering students has developed an artificial intelligence (AI) system that can identify areas prone to water logging, and may help metro cities avoid tedious road congestions caused by monsoon showers.
The researchers, including Aman Bansal and Apoorva Gupta from Netaji Subhas Institute of Technology (NSIT) in New Delhi combined rainfall, traffic, and location data to predict the severity of water logging in the vulnerable areas.
"In a lot of developing countries, including India, the issue of water logging is persistent. In 2016, the roads of Gurgaon were flooded leading to severely waterlogged streets, which left thousands of people stranded for several hours. In Mumbai too, such incidents are very common," said Rishab Gupta, from NSIT, told PTI.
"The damages caused by such occurrences triggered us to find a practical and feasible solution," said Gupta, one of the lead authors of the study that was presented at the Institute of Electricals and Electronics Engineers' (IEEE) 15th International Conference on Smart City in Bangkok last year.
The study was initially done on Manila, the capital city of Philippines which has similar environmental conditions like cities in India.
"We first marked the areas in Manila already established to be prone to water logging, based on data obtained from previously conducted surveys," Gupta said.
The areas susceptible to water logging were located with the help of past travel time data (the time taken to travel from one point to the other) sourced from smartphone-based cab service Uber, and elevation data of the area.
The intensity of water logging was calculated based on the rainfall data and the day of the week, as traffic on weekends is significantly less than that on weekdays.
"After we ran this data through our trained neural network, we verified the vulnerability of those locations and even came up with more areas defenceless against water logging," he said.
The data was fed into an artificial intelligence system that consists of a neural network that can derive patterns in the information fed to it.
The system was trained by the students to reveal a water logging intensity score using an algorithm which could determine the extremity of the problem in the area.
"Our work can be easily modulated for Delhi as the Uber data for Delhi is available now. I can produce the results in 5-10 days," said Gupta.
"This system can be trained to detect patterns on an hourly basis and for the future as well, which is something that even Google can't calculate," Gupta said.
Previously researchers used Internet of Things (IoTs) - a network small electronic devices installed in different locations to gather data about moisture, traffic, etc. However, the high cost of these devices made the project economically unviable.
"The fact that we could easily access travel time data for free from Uber which is like an open repository of traffic data made things simpler and feasible for us, and gave a practical appeal to the technology," Gupta said.
The system can also be used for pinpointing accident-prone areas and times in a city, for dynamically deciding strategic points for positioning of ambulances, calculating the effect of festivals and holidays on traffic, and can also be employed in urban road planning, he said.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
