Yi Cui, an associate professor of materials science and engineering at Stanford University, and his graduate students set to work designing an inexpensive, efficient air filter that could ease the breathing for people in polluted cities.
"We think we could use this material for personal masks, window shades and maybe automobiles and industrial waste. It works really well, and it might be a game-changer," said Cui.
The team looked for polymers that would have a strong attraction to the main components of smog, particularly particle matters that are smaller than 2.5 microns, known as PM2.5.
It turned out that polyacrylonitrile (PAN), a material commonly used to make surgical gloves, met these requirements.
"It was mostly by luck, but we found that PAN had the characteristics we were looking for, and it is breathtakingly strong," said Po-Chun Hsu, co-author on the study and a graduate student in Cui's lab.
Using a technique called electrospinning, the researchers converted liquid PAN into spider-web-like fibres that are just a thousandth the diameter of a human hair.
The final material allows about 70 per cent transparency and yet collects 99 per cent of the particles.
"The fibre just keeps accumulating particles, and can collect 10 times its own weight," said Chong Liu, lead author on the paper and a graduate student in Cui's lab.
"The lifespan of its effectiveness depends on application, but in its current form, our tests suggest it collects particles for probably a week," said Liu.
"The transparency and distance between the fibres means that light and air can pass through very efficiently, which makes it a very good application for windows," Cui said.
"It might be the first time in years that people in Beijing can open their window and let in a fresh breeze," Cui added.
The material might also have a place in filtering exhaust from cars, or from the smoke stacks of power plants and industrial complexes.
