New butterfly-inspired device for faster communication

Image
Press Trust of India Melbourne
Last Updated : Sep 07 2013 | 1:05 PM IST
By mimicking microscopic structures in butterfly wings, researchers have developed a nanodevice smaller than the width of a human hair that could make optical communication faster and more secure.
The international team of researchers from Swinburne University of Technology in Australia and Friedrich-Alexander Universitat Erlangen-Nurnberg in Germany, have produced a photonic crystal that can split both left and right circularly polarised light.
The design for this crystal was inspired by the 'Callophrys Rubi' butterfly, which has 3D nano-structures within its wings which give them their vibrant green colour. Other insects also have nano-structures that provide colour, but the Callophrys Rubi has one important difference.
"This butterfly's wing contains an immense array of interconnected nano-scale coiled springs that form a unique optical material. We used this concept to develop our photonic crystal device," researcher Dr Mark Turner, said.
Using 3D laser nano-technology, researchers built a photonic crystal with properties that don't exist in naturally occurring crystals, specifically one that works with circular polarisation. This miniature device contains over 750,000 tiny polymer nano-rods.
The photonic crystal acts as a miniature polarising beam splitter which is used in modern technology - such as telecommunications, microscopy and multimedia - are built from naturally occurring crystals, which work for linearly polarised light but not circularly polarised light.
"We believe we have created the first nano-scale photonic crystal chiral beam splitter," Director of the Centre for Micro-Photonics at Swinburne, Professor Min Gu, said.
"It has the potential to become a useful component for developing integrated photonic circuits that play an important role in optical communications, imaging, computing and sensing.
"The technology offers new possibilities for steering light in nano-photonic devices and takes us a step closer towards developing optical chips that could overcome the bandwidth bottleneck for ultra-high speed optical networks," said Gu.
The study was published in the journal Nature Photonics.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 07 2013 | 1:05 PM IST

Next Story