New caffeine-based drugs may prevent Parkinson's progression

Image
Press Trust of India Toronto
Last Updated : Oct 01 2016 | 1:42 PM IST
Scientists have developed novel caffeine-based chemical compounds that show promise in preventing the progression of Parkinson's disease.
Parkinson's disease attacks the nervous system, causing uncontrolled shakes, muscle stiffness, and slow, imprecise movement, chiefly in middle-aged and elderly people.
It is caused by the loss of brain cells (neurons) that produce dopamine, an essential neurotransmitter that allows neurons to "talk" to each other.
Researchers from the University of Saskatchewan in Canada focused on a protein called a-synuclein (AS), which is involved in dopamine regulation.
In Parkinson's sufferers, AS gets misfolded into a compact structure associated with the death of dopamine-producing neurons. AS appears to act like a prion disease.
In prion diseases, one mis-folded protein triggers mis-folding in others, spreading like falling dominos.
"Many of the current therapeutic compounds focus on boosting the dopamine output of surviving cells, but this is effective only as long as there are still enough cells to do the job," said Jeremy Lee, a biochemist from Saskatchewan.
"Our approach aims to protect dopamine-producing cells by preventing a-synuclein from mis-folding in the first place," said Lee.
Although the chemistry was challenging, Lee explained the team synthesised 30 different "bifunctional dimer" drugs, that is, molecules that link two different substances known to have an effect on dopamine-producing cells.
They started with a caffeine "scaffold," guided by literature that shows the stimulant has a protective effect against Parkinson's.
From this base, they added other compounds with known effects: nicotine, the diabetes drug metformin, and aminoindan, a research chemical similar to the Parkinson's drug rasagiline.
Using a yeast model of Parkinson's disease, researchers discovered two of the compounds prevented the AS protein from clumping, effectively allowing the cells to grow normally.
"Our results suggest these novel bifunctional dimers show promise in preventing the progression of Parkinson's disease," Lee said.
The findings were published in the journal ACS Chemical Neuroscience.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 01 2016 | 1:42 PM IST

Next Story