New material to efficiently capture carbon dioxide developed: Study

Image
Press Trust of India Tokyo
Last Updated : Oct 13 2019 | 1:15 PM IST

Researchers have developed a new material that can selectively capture carbon dioxide molecules, and efficiently convert them into useful organic products -- an advance that may help develop new ways to contain global greenhouse gas emissions.

The researchers, including those from Kyoto University in Japan, said that the new material had high affinity towards carbon dioxide molecules, and can quickly and effectively convert it into useful organic materials.

The study, published in the journal Nature Communications, noted that a possible way to counteract the excess carbon dioxide produced from burning fossil fuels was to capture and sequester the greenhouse gas from the atmosphere.

However, the researchers said that currently available methods were highly energy intensive to do so.

The new material developed by the researchers is a porous polymer -- PCP, also known as MOF or metal-organic framework -- consisting of zinc metal ions.

The researchers tested this material using X-ray structural analysis, and found that it can selectively capture only carbon dioxide molecules with ten times more efficiency than other PCPs.

The study noted that the material has an organic component with a propeller-like molecular structure.

When carbon dioxide molecules approach the structure, the researchers said that the molecule rotated and rearranged to trap the gas molecules.

This resulted in slight changes to the molecular channels within the PCP, allowing it to act as a sieve which can recognize molecules by their size and shape, the study noted.

The researchers said that the PCP is also recyclable with the efficiency of the trapping process not decreasing even after 10 reaction cycles.

"One of the greenest approaches to carbon capture is to recycle the carbon dioxide into high-value chemicals, such as cyclic carbonates which can be used in petrochemicals and pharmaceuticals," said co-author of the study Susumu Kitagawa from Kyoto University.

The researchers said that the captured gas molecules could be converted and used to make polyurethane -- a material with a wide variety of applications including clothing, domestic appliances and packaging.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 13 2019 | 1:15 PM IST

Next Story