The advance is a big step toward a future in which the predominant chemical factories of the world are colonies of genetically engineered bacteria.
A team of researchers led by Harvard geneticist George Church at the Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) modified the genes of bacteria in a way that lets them programme exactly what chemical they want the cells to produce - and how much - through the bacteria's metabolic processes.
The concept of metabolic engineering, or manipulating bacteria to synthesise useful chemicals, is not new.
Most promising, the production timescale is nearly 1,000-fold faster than the methods currently used for metabolic engineering, 'Harvard Gazette' reported.
"This advance has implications for pharmaceutical, biofuel, and renewable chemical production," said Wyss Institute Founding Director Donald Ingber.
"By increasing the production output by such a huge factor, we would not only be improving current chemical production but could also make economical production of many new chemicals attainable," Ingber said.
"We make the bacteria addicted to the chemicals we want them to produce," said Jameson Rogers, a lead co-author of the study, Graduate School of Arts and Sciences PhD candidate at Harvard School of Engineering and Applied Science, and Wyss Institute graduate researcher.
"Then, we treat them with an antibiotic that only allows the most productive cells to survive and make it on to the next round of evolution," Rogers said.
The technique makes a desired chemical product essential to the bacteria's survival by modifying their DNA so that antibiotic-resistant genes are activated, but only in the presence of a certain chemical, such as the one that is desired for production.
Only the most productive cells generate enough of the desired chemical to be completely resistant to the antibiotic and survive to the next round of evolution.
As each evolution cycle progresses, the bacteria become more and more effective at producing the desired chemical as they use the "survival of the fittest" principle to stamp out the weakest producer cells.
The research was published in the Proceedings of the National Academy of Sciences (PNAS).
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
