New method to create nanofibres

Image
Press Trust of India Washington
Last Updated : Aug 02 2014 | 10:59 AM IST
Researchers have developed a novel method for creating self-assembled protein/polymer nanostructures that are reminiscent of fibres found in living cells.
The work by Carnegie Mellon University offers a promising new way to fabricate materials for drug delivery and tissue engineering applications.
"We have demonstrated that, by adding flexible linkers to protein molecules, we can form completely new types of aggregates," said Tomasz Kowalewski, professor of chemistry in Carnegie Mellon's Mellon College of Science.
"These aggregates can act as a structural material to which you can attach different payloads, such as drugs. In nature, this protein isn't close to being a structural material," Kowalewski said.
The building blocks of the fibres are a few modified green fluorescent protein (GFP) molecules linked together using a process called click chemistry.
An ordinary GFP molecule does not normally bind with other GFP molecules to form fibres.
But when Carnegie Mellon graduate student Saadyah Averick, working under the guidance of Krzysztof Matyjaszewski, the JC Warner Professor of Natural Sciences and University Professor of Chemistry in CMU's Mellon College of Science, modified the GFP molecules and attached PEO-dialkyne linkers to them, the GFP molecules appeared to self-assemble into long fibres.
Importantly, the fibres disassembled after being exposed to sound waves, and then reassembled within a few days.
Systems that exhibit this type of reversible fibrous self-assembly have been long sought by scientists for use in applications such as tissue engineering, drug delivery, nanoreactors and imaging.
The research team observed the fibres using confocal light microscopy, confirmed their assembly using dynamic light scattering and studied their morphology using atomic force microscopy (AFM).
They also observed that the fibres were fluorescent, indicating that the GFP molecules retained their 3-D structure while linked together.
To determine what processes were driving the self-assembly, Matyjaszewski and Kowalewski turned to Anna Balazs, Distinguished Professor of Chemical Engineering and the Robert v d Luft Professor at the University of Pittsburgh.
Balazs ran a computer simulation of the GFP molecules' self-assembly process using a technique called dissipative particle dynamics, a type of coarse-grained molecular dynamics method.
The simulation confirmed the modified GFP's tendency to form fibres and showed that the self-assembly process was driven by the interaction of hydrophobic patches on the surfaces of individual GFP molecules.
In addition, Balazs's simulated fibres closely corresponded with what Kowalewski observed using AFM imaging.
The findings are published in the Angewandte Chemie International Edition.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 02 2014 | 10:59 AM IST

Next Story