New proposed particle may help detect dark matter

Image
Press Trust of India London
Last Updated : Feb 01 2015 | 1:35 PM IST
Researchers have proposed a new fundamental particle which could explain why no one has managed to detect the elusive 'dark matter' that makes up 85 per cent of the universe's mass.
Dark matter is thought to exist because of its gravitational effects on stars and galaxies, gravitational lensing (the bending of light rays) around these, and through its imprint on the Cosmic Microwave Background (the afterglow of the Big Bang).
Despite compelling indirect evidence and considerable experimental effort, no one has managed to detect dark matter directly.
Particle physics gives clues to what dark matter might be, and the standard view is that dark matter particles have a very large mass for fundamental particles, comparable to that of heavy atoms, researchers said.
Lighter dark matter particles are considered less likely for astrophysical reasons, although exceptions are known, and this research highlights a previously unknown window where they could exist and, with very general arguments from particle physics, derives some surprising results, according to researchers from the University of Southampton.
They have proposed a new particle that has a mass only about 0.02 per cent that of an electron.
While it does not interact with light, as required for dark matter, it does interact surprisingly strongly with normal matter.
Indeed, in stark contrast to other candidates, it may not even penetrate Earth's atmosphere, researchers said.
Earth-bound detection is therefore not likely, so the researchers plan to incorporate searches into a space experiment planned by the Macroscopic quantum resonators (MAQRO) consortium, with whom they are already involved.
A nanoparticle, suspended in space and exposed directly to the flow of dark matter, will be pushed downstream and sensitive monitoring of this particle's position will reveal information about the nature of this dark matter particle, if it exists, researchers said.
"Our candidate particle sounds crazy, but currently there seem to be no experiments or observations which could rule it out," said Dr James Bateman, from Physics and Astronomy at the University of Southampton and co-author of the study.
"Dark matter is one of the most important unsolved problems in modern physics, and we hope that our suggestion will inspire others to develop detailed particle theory and even experimental tests," he said.
"At the moment, experiments on dark matter do not point into a clear direction and, given that also the Large Hadron Collider at CERN has not found any signs of new physics yet, it may be time that we shift our paradigm towards alternative candidates for dark matter," said Dr Alexander Merle, co-author from the Max Planck Institute in Munich, Germany.
The research is published in the journal Scientific Reports.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 01 2015 | 1:35 PM IST

Next Story