New research solves plant sex mystery

Image
Press Trust of India London
Last Updated : Jun 09 2014 | 1:32 PM IST
In a breakthrough, a team of biologists has solved a mystery surrounding how plants have sex.
The researchers from the University of Leicester have discovered a pair of proteins made by flowering plants that are vital for the production of the sperm present within each pollen grain.
Scientists already knew that flowering plants, in contrast to animals, require not one, but two sperm cells for successful fertilisation: one to join with the egg cell to produce the embryo and one to join with a second cell to produce the nutrient-rich endosperm inside the seed.
The mystery of this 'double fertilisation' process is how each single pollen grain is able to produce twin sperm cells.
The new study from the Twell Laboratory at the University of Leicester, published in the journal The Plant Cell, has found a pair of genes called DAZ1 and DAZ2 that are essential for making twin sperm cells.
Plants with mutated versions of DAZ1 and DAZ2 produce pollen grains with a single sperm that is unable to fertilise.
The researchers showed that DAZ1 and DAZ2 are controlled by the protein DUO1 that acts as a 'master switch' - so that DUO1 and the DAZ1/DAZ2 genes work in tandem to control a gene network that ensures a pair of fertile sperm is made inside each pollen grain.
DAZ1 and DAZ2 perform their role by cooperating with a well-known 'repressor' protein called TOPLESS that acts as a brake on unwanted gene activity that would otherwise halt sperm and seed production.
Although TOPLESS has many roles in plants it has not previously been linked sperm production.
"We often take for granted sexual reproduction in plants and its role in our lives. It is a complex process that has been studied scientifically for over a century, but it is only recently that we are beginning to get a grip on the underlying mechanisms," said Professor David Twell at the University of Leicester's Department of Biology, who led the study.
"We hope to use our discovery to decipher the origins of sexual reproduction and to further demystify the fascinating process - of how plants make the fertile sperm inside the pollen grains - that are essential for the vast majority of our food crop production," Twell said.
Given their important role in male fertility, the discovery of DAZ1 and DAZ2 has the potential to be applied in the development of new plant breeding techniques to prevent the unwanted passing of genes - or 'horizontal gene transfer' - between crops or from crops to wild species, researchers said.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jun 09 2014 | 1:32 PM IST

Next Story